1 Purpose

nag_zgeqrt (f08apc) recursively computes, with explicit blocking, the QR factorization of a complex m by n matrix.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>

void nag_zgeqrt (Nag_OrderType order, Integer m, Integer n, Integer nb,
    Complex a[], Integer pda, Complex t[], Integer pdt, NagError *fail)
```

3 Description

nag_zgeqrt (f08apc) forms the QR factorization of an arbitrary rectangular complex m by n matrix. No pivoting is performed.

It differs from nag_zgeqrf (f08asc) in that it: requires an explicit block size; stores reflector factors that are upper triangular matrices of the chosen block size (rather than scalars); and recursively computes the QR factorization based on the algorithm of Elmroth and Gustavson (2000).

If $m \geq n$, the factorization is given by:

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix},$$

where R is an n by n upper triangular matrix (with real diagonal elements) and Q is an m by m unitary matrix. It is sometimes more convenient to write the factorization as

$$A = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R \\ 0 \end{pmatrix},$$

which reduces to

$$A = Q_1 R,$$

where Q_1 consists of the first n columns of Q, and Q_2 the remaining $m - n$ columns.

If $m < n$, R is upper trapezoidal, and the factorization can be written

$$A = Q \begin{pmatrix} R_1 & R_2 \end{pmatrix},$$

where R_1 is upper triangular and R_2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of $\min(m, n)$ elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see Section 9).

Note also that for any $k < n$, the information returned represents a QR factorization of the first k columns of the original matrix A.

NAG Library Function Document

nag_zgeqrt (f08apc)
4 References

5 Arguments
1: order – Nag_OrderType

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m – Integer
On entry: m, the number of rows of the matrix A.
Constraint: m ≥ 0.

3: n – Integer
On entry: n, the number of columns of the matrix A.
Constraint: n ≥ 0.

4: nb – Integer
On entry: the explicitly chosen block size to be used in computing the QR factorization. See Section 9 for details.
Constraints:

nb ≥ 1;
if min(m,n) > 0, nb ≤ min(m,n).

5: a[dim] – Complex

Note: the dimension, dim, of the array a must be at least
max(1, pda × n) when order = Nag_ColMajor;
max(1, m × pda) when order = Nag_RowMajor.

The (i,j)th element of the matrix A is stored in

a[(j - 1) × pda + i - 1] when order = Nag_ColMajor;

a[(i - 1) × pda + j - 1] when order = Nag_RowMajor.

On entry: the m by n matrix A.
On exit: if m ≥ n, the elements below the diagonal are overwritten by details of the unitary matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix Q and the remaining elements are overwritten by the corresponding elements of the m by n upper trapezoidal matrix R.

The diagonal elements of R are real.
6: **pda** – Integer
 Input
 On entry: the stride separating row or column elements (depending on the value of *order*) in the array *a*.

 Constraints:
    ```
    if *order* = Nag_ColMajor, *pda* ≥ max(1, *m*);  
    if *order* = Nag_RowMajor, *pda* ≥ max(1, *n*).
    ```

7: **t**[**dim**] – Complex
 Output

 Note: the dimension, *dim*, of the array *t* must be at least
    ```
    max(1, *pdt* × min(*m, n*)) when *order* = Nag_ColMajor;  
    max(1, *nb* × *pdt*) when *order* = Nag_RowMajor.
    ```

 The \((i, j)\)th element of the matrix *T* is stored in
    ```
    t[(j - 1) × *pdt* + i - 1] when *order* = Nag_ColMajor;  
    t[(i - 1) × *pdt* + j - 1] when *order* = Nag_RowMajor.
    ```

 On exit: further details of the unitary matrix *Q*. The number of blocks is \(b = \left\lfloor \frac{k}{nb} \right\rfloor\), where
 k = min(*m, n*) and each block is of order *nb* except for the last block, which is of order
 \(k - (b - 1) \times nb\). For each of the blocks, an upper triangular block reflector factor is computed:
 \(T_1, T_2, \ldots, T_b\). These are stored in the *nb* by *n* matrix *T* as
 \(T = [T_1 | T_2 | \ldots | T_b]\).

8: **pdt** – Integer
 Input
 On entry: the stride separating row or column elements (depending on the value of *order*) in the array *t*.

 Constraints:
    ```
    if *order* = Nag_ColMajor, *pdt* ≥ *nb*;  
    if *order* = Nag_RowMajor, *pdt* ≥ max(1, min(*m, n*)).
    ```

9: **fail** – NagError*
 Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle value\rangle\) had an illegal value.

NE_INT

On entry, \(m = \langle value\rangle\).
Constraint: \(m \geq 0\).

On entry, \(n = \langle value\rangle\).
Constraint: \(n \geq 0\).

NE_INT_2

On entry, \(pda = \langle value\rangle\) and \(m = \langle value\rangle\).
Constraint: \(pda \geq max(1, m)\).
On entry, \(pda = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1,n) \).

On entry, \(pdt = \langle \text{value} \rangle \) and \(nb = \langle \text{value} \rangle \).
Constraint: \(pdt \geq nb \).

NE_INT_3

On entry, \(nb = \langle \text{value} \rangle \), \(m = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(nb \geq 1 \) and
if \(\min(m,n) > 0 \), \(nb \leq \min(m,n) \).

On entry, \(pdt = \langle \text{value} \rangle \), \(m = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(pdt \geq \max(1,\min(m,n)) \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix \((A + E)\), where

\[||E||_2 = O(\epsilon) ||A||_2, \]

and \(\epsilon \) is the *machine precision*.

8 Parallelism and Performance

nag_zgeqrt (f08apc) is not threaded by NAG in any implementation.
nag_zgeqrt (f08apc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately \(\frac{2}{3}n^2(3m - n) \) if \(m \geq n \) or \(\frac{\epsilon}{3}n^2(3n - m) \) if \(m < n \).

To apply \(Q \) to an arbitrary complex rectangular matrix \(C \), nag_zgeqrt (f08apc) may be followed by a call to nag_zgemqrt (f08aqc). For example,

\[
nag_zgemqrt(order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n),nb,a,pda,
 t,pdt,c,pdc,&fail)\]

forms \(C = Q^H C \), where \(C \) is \(m \) by \(p \).

To form the unitary matrix \(Q \) explicitly, simply initialize the \(m \) by \(m \) matrix \(C \) to the identity matrix and form \(C = QC \) using nag_zgemqrt (f08aqc) as above.
The block size, \(nb \), used by \texttt{nag_zgeqrt} (f08apc) is supplied explicitly through the interface. For moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the algorithm with the optimal value being dependent on problem size and platform. A value of \(nb = \frac{64}{\min(m, n)} \) is likely to achieve good efficiency and it is unlikely that an optimal value would exceed 340.

To compute a \(QR \) factorization with column pivoting, use \texttt{nag_ztpqrt} (f08bpc) or \texttt{nag_zgeqpf} (f08bsc). The real analogue of this function is \texttt{nag_dgeqrt} (f08abc).

10 Example

This example solves the linear least squares problems

\[
\text{minimize } \|Ax_i - b_i\|_2, \quad i = 1, 2
\]

where \(b_1 \) and \(b_2 \) are the columns of the matrix \(B \),

\[
A = \begin{pmatrix}
0.96 - 0.81i & -0.03 + 0.96i & -0.91 + 2.06i & -0.05 + 0.41i \\
-0.98 + 1.98i & -1.20 + 0.19i & -0.66 + 0.42i & -0.81 + 0.56i \\
0.62 - 0.46i & 1.01 + 0.02i & 0.63 - 0.17i & -1.11 + 0.60i \\
-0.37 + 0.38i & 0.19 - 0.54i & -0.98 - 0.36i & 0.22 - 0.20i \\
0.83 + 0.51i & 0.20 + 0.01i & -0.17 - 0.46i & 1.47 + 1.59i \\
1.08 - 0.28i & 0.20 - 0.12i & -0.07 + 1.23i & 0.26 + 0.26i
\end{pmatrix}
\]

and

\[
B = \begin{pmatrix}
-2.09 + 1.93i & 3.26 - 2.70i \\
3.34 - 3.53i & -6.22 + 1.16i \\
-4.94 - 2.04i & 7.94 - 3.13i \\
0.17 + 4.23i & 1.04 - 4.26i \\
-5.19 + 3.63i & -2.31 - 2.12i \\
0.98 + 2.53i & -1.39 - 4.05i
\end{pmatrix}
\]

10.1 Program Text

/* nag_zgeqrt (f08apc) Example Program. */
* */
#include <nag.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 double rnorm;
 Integer exit_status = 0;
 Integer pda, pdb, pdt;
 Integer i, j, m, n, nb, nrhs;
 /* Arrays */
 Complex *a = 0, *b = 0, *t = 0;
 /* Nag Types */
 Nag_OrderType order;
 NagError fail;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I,J) a[(J-1)*pda + I-1]
 #define B(I,J) b[(J-1)*pdb + I-1]
 #define T(I,J) t[(J-1)*pdt + I-1]
 #endif

 /* ... */
order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J-1]
#define B(I,J) b[(I-1)*pdb + J-1]
#define T(I,J) t[(I-1)*pdt + J-1]
#endif
#define Nag_RowMajor
#endif
INIT_FAIL(fail);
printf("nag_zgeqrt (f08apc) Example Program Results\n\n");
fflush(stdout);
/* Skip heading in data file*/
#if defined _WIN32
scanf_s("%*[\n]");
#else
scanf("%*[\n]");
#endif
#if defined _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &m, &n, &nrhs);
#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &m, &n, &nrhs);
#endif
nb = MIN(m, n);
if (!(a = NAG_ALLOC(m*n, Complex))||
!(b = NAG_ALLOC(m*nrhs, Complex))||
!(t = NAG_ALLOC(nb*MIN(m, n), Complex))){
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
#if defined NAG_COLUMN_MAJOR
pda = m;
pdb = m;
pdt = nb;
#else
pda = n;
pdb = nrhs;
pdt = MIN(m, n);
#endif
/* Read A and B from data file */
for (i = 1; i <= m; ++i) {
 for (j = 1; j <= n; ++j) {
 #ifdef _WIN32
 scanf_s(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
 #else
 scanf(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
 #endif
 }
 for (i = 1; i <= m; ++i) {
 for (j = 1; j <= nrhs; ++j) {
 #ifdef _WIN32
 scanf_s(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
 #else
 scanf(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
 #endif
 }
 }
 /* nag_zgeqrt (f08apc).
/* Compute the QR factorization of A by recursive algorithm. */
nag_zgeqrt(order, m, n, nb, a, pda, t, pdt, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_zgeqrt (f08apc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* nag_zgemqrt (f08aqc). */
/* Compute C = (C1) = (Q^H)*B, storing the result in B. */
/* (C2) */
/* by applying Q^H from left. */
nag_zgemqrt(order, Nag_LeftSide, Nag_ConjTrans, m, nrhs, n, nb, a, pda, t,
pdt, b, pdb, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_zgemqrt (f08aqc).\n%s\n", fail.message);
 exit_status = 2;
 goto END;
}

/* nag_ztrtrs (f07tsc). */
/* Compute least-squares solutions by backsubstitution in R*X = C1. */
nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NONUnitDiag, n, nrhs, a, pda,
b, pdb, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_ztrtrs (f07tsc).\n%s\n", fail.message);
 exit_status = 3;
 goto END;
}

/* nag_gen_complx_mat_print_comp (x04dbc). */
/* Print least-squares solutions. */
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NONUnitDiag, n,
nrhs, b, pdb, NagBracketForm, "%7.4f",
"Least-squares solution(s)", Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n", fail.message);
 exit_status = 4;
 goto END;
}

printf("\n Square root(s) of the residual sum(s) of squares \n");
for (j=1; j<=nrhs; j++) {
 /* nag_zge_norm (f16uac). */
 /* Compute and print estimate of the square root of the residual */
 /* sum of squares. */
 nag_zge_norm(order, Nag_FrobeniusNorm, m - n, l, &R(n + l,j), pdb, &rnorm,
 &fail);
 if (fail.code != NE_NOERROR) {
 printf("\nError from nag_zge_norm (f16uac).\n%s\n", fail.message);
 exit_status = 5;
 goto END;
 }
 printf(" %11.2e ", rnorm);
}
printf("\n");

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(t);
return exit_status;
}
10.2 Program Data

nag_zgeqrt (f08apc) Example Program Data

\[
\begin{array}{ccc}
6 & 4 & 2 \\
(0.96,-0.81) & (-0.03, 0.96) & (-0.91, 2.06) & (-0.05, 0.41) \\
(-0.98, 1.98) & (-1.20, 0.19) & (-0.66, 0.42) & (-0.81, 0.56) \\
(0.62,-0.46) & (1.01, 0.02) & (0.63,-0.17) & (-1.11, 0.60) \\
(-0.37, 0.38) & (0.19,-0.54) & (-0.98,-0.36) & (0.22,-0.20) \\
(0.83, 0.51) & (0.20, 0.01) & (-0.17,-0.46) & (1.47, 1.59) \\
(1.08,-0.28) & (0.20,-0.12) & (-0.07, 1.23) & (0.26, 0.26) \\
\end{array}
\]

: matrix A

\[
\begin{array}{cc}
(-2.09, 1.93) & (3.26,-2.70) \\
(3.34,-3.53) & (-6.22, 1.16) \\
(-4.94,-2.04) & (7.94,-3.13) \\
(0.17, 4.23) & (1.04,-4.26) \\
(-5.19, 3.63) & (-2.31,-2.12) \\
(0.98, 2.53) & (-1.39,-4.05) \\
\end{array}
\]

: matrix B

10.3 Program Results

nag_zgeqrt (f08apc) Example Program Results

Least-squares solution(s)

\[
\begin{array}{c}
1 \\
2 \\
\end{array}
\]

1 (-0.5044,-1.2179) (0.7629, 1.4529) \\
2 (-2.4281, 2.8574) (5.1570,-3.6089) \\
3 (1.4872,-2.1955) (-2.6518, 2.1203) \\
4 (0.4537, 2.6904) (-2.7606, 0.3318) \\
\]

Square root(s) of the residual sum(s) of squares

6.88e-02 1.87e-01