NAG Library Function Document

nag_zhprfs (f07pvc)

1 Purpose

nag_zhprfs (f07pvc) returns error bounds for the solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides, \(AX = B \), using packed storage. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

```c
#include <nag.h>
#include <nagf07.h>

void nag_zhprfs (Nag_OrderType order, Nag_UploType uplo, Integer n,
    Integer nrhs, const Complex ap[], const Complex afp[],
    const Integer ipiv[], const Complex b[], Integer pdb, Complex x[],
    Integer pdx, double ferr[], double berr[], NagError *fail)
```

3 Description

nag_zhprfs (f07pvc) returns the backward errors and estimated bounds on the forward errors for the solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides \(AX = B \), using packed storage. The function handles each right-hand side vector (stored as a column of the matrix \(B \)) independently, so we describe the function of nag_zhprfs (f07pvc) in terms of a single right-hand side \(b \) and solution \(x \).

Given a computed solution \(x \), the function computes the component-wise backward error \(\beta \). This is the size of the smallest relative perturbation in each element of \(A \) and \(b \) such that \(x \) is the exact solution of a perturbed system

\[
(A + \delta A)x = b + \delta b
\]

\[
|\delta a_{ij}| \leq \beta |a_{ij}| \quad \text{and} \quad |\delta b_i| \leq \beta |b_i|.
\]

Then the function estimates a bound for the component-wise forward error in the computed solution, defined by:

\[
\max_i |x_i - \hat{x}_i| / \max_i |x_i|
\]

where \(\hat{x} \) is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

5 Arguments

1: order – Nag_OrderType

 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.
uplo – Nag_UploType

Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.

\(\text{uplo} = \text{Nag_UPPER} \)

The upper triangular part of A is stored and A is factorized as \(PUDU^H P^T \), where U is upper triangular.

\(\text{uplo} = \text{Nag_LOWER} \)

The lower triangular part of A is stored and A is factorized as \(PLDL^H P^T \), where L is lower triangular.

Constraint: \(\text{uplo} = \text{Nag_UPPER} \) or \(\text{Nag_LOWER} \).

n – Integer

Input

On entry: \(n \), the order of the matrix A.

Constraint: \(n \geq 0 \).

nrhs – Integer

Input

On entry: \(r \), the number of right-hand sides.

Constraint: \(nrhs \geq 0 \).

\(\text{ap}[\text{dim}] \) – const Complex

Input

Note: the dimension, \(\text{dim} \), of the array \(\text{ap} \) must be at least \(\max(1, n \times (n + 1)/2) \).

On entry: the \(n \) by \(n \) original Hermitian matrix A as supplied to nag_zhptrf (f07prc).

\(\text{afp}[\text{dim}] \) – const Complex

Input

Note: the dimension, \(\text{dim} \), of the array \(\text{afp} \) must be at least \(\max(1, n \times (n + 1)/2) \).

On entry: the factorization of A stored in packed form, as returned by nag_zhptrf (f07prc).

\(\text{ipiv}[\text{dim}] \) – const Integer

Input

Note: the dimension, \(\text{dim} \), of the array \(\text{ipiv} \) must be at least \(\max(1, n) \).

On entry: details of the interchanges and the block structure of D, as returned by nag_zhptrf (f07prc).

\(\text{b}[\text{dim}] \) – const Complex

Input

Note: the dimension, \(\text{dim} \), of the array \(\text{b} \) must be at least

\(\max(1, \text{pdb} \times \text{nrhs}) \) when \(\text{order} = \text{Nag_COL_MAJOR} \);

\(\max(1, n \times \text{pdb}) \) when \(\text{order} = \text{Nag_ROW_MAJOR} \).

The \((i, j)\)th element of the matrix B is stored in

\(\text{b}[(j-1) \times \text{pdb} + i - 1] \) when \(\text{order} = \text{Nag_COL_MAJOR} \);

\(\text{b}[(i-1) \times \text{pdb} + j - 1] \) when \(\text{order} = \text{Nag_ROW_MAJOR} \).

On entry: the \(n \) by \(r \) right-hand side matrix B.

pdb – Integer

Input

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) in the array \(\text{b} \).

Constraints:

- if \(\text{order} = \text{Nag_COL_MAJOR} \), \(\text{pdb} \geq \max(1, n) \);
- if \(\text{order} = \text{Nag_ROW_MAJOR} \), \(\text{pdb} \geq \max(1, \text{nrhs}) \).
10: \(\mathbf{x}[\text{dim}] \) – Complex
\text{Input/Output}

\textbf{Note:} the dimension, \textit{dim}, of the array \(\mathbf{x} \) must be at least
\[
\max(1, \text{pdx} \times \text{nrhs}) \quad \text{when } \text{order} = \text{Nag_ColMajor};
\]
\[
\max(1, \text{n} \times \text{pdx}) \quad \text{when } \text{order} = \text{Nag_RowMajor}.
\]

The \((i,j)\)th element of the matrix \(X \) is stored in
\[
x[(j - 1) \times \text{pdx} + i - 1] \quad \text{when } \text{order} = \text{Nag_ColMajor};
x[(i - 1) \times \text{pdx} + j - 1] \quad \text{when } \text{order} = \text{Nag_RowMajor}.
\]

\textit{On entry:} the \(n \) by \(r \) solution matrix \(X \), as returned by \text{f07psc}.

\textit{On exit:} the improved solution matrix \(X \).

11: \text{pdx} – Integer
\text{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \text{order}) in the array \(\mathbf{x} \).

\textit{Constraints:}
\[
\text{if } \text{order} = \text{Nag_ColMajor}, \text{pdx} \geq \max(1, \text{n});
\]
\[
\text{if } \text{order} = \text{Nag_RowMajor}, \text{pdx} \geq \max(1, \text{nrhs}).
\]

12: \text{ferr[\text{nrhs}]} – double
\text{Output}

\textit{On exit:} \text{ferr}\,[j - 1] \text{ contains an estimated error bound for the } j \text{th solution vector, that is, the } j \text{th column of } X, \text{ for } j = 1, 2, \ldots, r.

13: \text{berr[\text{nrhs}]} – double
\text{Output}

\textit{On exit:} \text{berr}\,[j - 1] \text{ contains the component-wise backward error bound } \beta \text{ for the } j \text{th solution vector, that is, the } j \text{th column of } X, \text{ for } j = 1, 2, \ldots, r.

14: \text{fail} – NagError *
\text{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \quad \textbf{Error Indicators and Warnings}

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

\textbf{NE_INT}

On entry, \(\mathbf{n} = \langle \text{value} \rangle \).
Constraint: \(\mathbf{n} \geq 0 \).

On entry, \(\mathbf{nrhs} = \langle \text{value} \rangle \).
Constraint: \(\mathbf{nrhs} \geq 0 \).

On entry, \(\text{pdb} = \langle \text{value} \rangle \).
Constraint: \(\text{pdb} > 0 \).

On entry, \(\text{pdx} = \langle \text{value} \rangle \).
Constraint: \(\text{pdx} > 0 \).
On entry, $\text{pdb} = \langle \text{value} \rangle$ and $n = \langle \text{value} \rangle$.
Constraint: $\text{pdb} \geq \max(1, n)$.

On entry, $\text{pdb} = \langle \text{value} \rangle$ and $\text{nrhs} = \langle \text{value} \rangle$.
Constraint: $\text{pdb} \geq \max(1, \text{nrhs})$.

On entry, $\text{pdx} = \langle \text{value} \rangle$ and $n = \langle \text{value} \rangle$.
Constraint: $\text{pdx} \geq \max(1, n)$.

On entry, $\text{pdx} = \langle \text{value} \rangle$ and $\text{nrhs} = \langle \text{value} \rangle$.
Constraint: $\text{pdx} \geq \max(1, \text{nrhs})$.

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

nag_zhprfs (f07pvc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

For each right-hand side, computation of the backward error involves a minimum of $16n^2$ real floating-point operations. Each step of iterative refinement involves an additional $24n^2$ real operations. At most five steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form $Ax = b$; the number is usually 5 and never more than 11. Each solution involves approximately $8n^2$ real operations.

The real analogue of this function is nag_dsprfs (f07phc).
10 Example

This example solves the system of equations $AX = B$ using iterative refinement and to compute the forward and backward error bounds, where

$$A = \begin{bmatrix}
-1.36 + 0.00i & 1.58 + 0.90i & 2.21 - 0.21i & 3.91 + 1.50i \\
1.58 - 0.90i & -8.87 + 0.00i & -1.84 - 0.03i & -1.78 + 1.18i \\
2.21 + 0.21i & -1.84 + 0.03i & -4.63 + 0.00i & 0.11 + 0.11i \\
3.91 - 1.50i & -1.78 - 1.18i & 0.11 - 0.11i & -1.84 + 0.00i
\end{bmatrix}$$

and

$$B = \begin{bmatrix}
7.79 + 5.48i & -35.39 + 18.01i \\
-0.77 - 16.05i & 4.23 - 70.02i \\
-9.58 + 3.88i & -24.79 - 8.40i \\
2.98 - 10.18i & 28.68 - 39.89i
\end{bmatrix}.$$

Here A is Hermitian indefinite, stored in packed form, and must first be factorized by nag_zhptrf (f07pdc).

10.1 Program Text

```c
/* nag_zhprfs (f07pvc) Example Program. */
* Copyright 2014 Numerical Algorithms Group.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
    /* Scalars */
    Integer i, j, n, nrhs, ap_len, afp_len;
    Integer berr_len, ferr_len, pdb, pdx;
    Integer exit_status = 0;
    NagError fail;
    Nag_UploType uplo;
    Nag_OrderType order;
    /* Arrays */
    Integer *ipiv = 0;
    char nag_enum_arg[40];
    Complex *afp = 0, *ap = 0, *b = 0, *x = 0;
    double *berr = 0, *ferr = 0;

    #ifdef NAG_COLUMN_MAJOR
    #define A_LOWER(I, J) ap[(2*n-J)*(J-1)/2 + I - 1]
    #define A_UPPER(I, J) ap[J*(J-1)/2 + I - 1]
    #define B(I, J) b[(J-1)*pdb + I-1]
    #define X(I, J) x[(J-1)*pdx + I-1]
    order = Nag_ColMajor;
    #else
    #define A_LOWER(I, J) ap[I*(I-1)/2 + J - 1]
    #define A_UPPER(I, J) ap[(2*n-I)*(I-1)/2 + J - 1]
    #define B(I, J) b[(I-1)*pdb + J - 1]
    #define X(I, J) x[(I-1)*pdx + J - 1]
    order = Nag_RowMajor;
    #endif
    INIT_FAIL(fail);

    printf("nag_zhprfs (f07pvc) Example Program Results\n\n");

    return 0;
}
```

Mark 25
/* Skip heading in data file */
#endif _WIN32
scanf_s("%*[\n] ");
#else
scanf("%*[\n] ");
#endif
#endif _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &n, &nrhs);
#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &n, &nrhs);
#endif
#endif _WIN32
scanf_s("%*\n[^
] ");
#else
scanf("%*\n[^
] ");
#endif
ap_len = n * (n + 1)/2;
afp_len = n * (n + 1)/2;
berr_len = nrhs;
ferr_len = nrhs;
#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;
#else
pdb = nrhs;
pdx = nrhs;
#endif
/* Allocate memory */
if (!(!ipiv = NAG_ALLOC(n, Integer)) ||
 !(afp = NAG_ALLOC(afp_len, Complex)) ||
 !(ap = NAG_ALLOC(ap_len, Complex)) ||
 !(b = NAG_ALLOC(n * nrhs, Complex)) ||
 !(x = NAG_ALLOC(n * nrhs, Complex)) ||
 !(berr = NAG_ALLOC(berr_len, double)) ||
 !(ferr = NAG_ALLOC(ferr_len, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
#ifdef _WIN32
scanf_s(" %39s%*[\n] ", nag_enum_arg, _countof(nag_enum_arg));
#else
scanf(" %39s%*[\n] ", nag_enum_arg);
#endif
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value */
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
if (uplo == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 #ifdef _WIN32
 scanf_s(" (%lf , %lf)", &A_UPPER(i, j).re,
 &A_UPPER(i, j).im);
 #else
 scanf(" (%lf , %lf)", &A_UPPER(i, j).re,
 &A_UPPER(i, j).im);
 #endif
 }
 #ifdef _WIN32
 scanf_s("%*[\n] ");
 #else
 scanf("%*[\n] ");
 #endif
} else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 "f07pvc.6 Mark 25 NAG Library Manual
```c
#ifdef _WIN32
    scanf_s(" ( %lf , %lf )", &A_LOWER(i, j).re,
            &A_LOWER(i, j).im);
#else
    scanf(" ( %lf , %lf )", &A_LOWER(i, j).re,
            &A_LOWER(i, j).im);
#endif

for (i = 1; i <= n; ++i)
{
    for (j = 1; j <= nrhs; ++j)
    {
        if (j <= n)
        {
            scanf_s("%*[\n] ");
        }
    }
    for (j = n + 1, i <= n; ++j)
    {
        scanf("%*[\n] ");
    }
}
for (i = 1; i <= n * (n + 1) / 2; ++i)
{
    afp[i-1].re = ap[i-1].re;
    afp[i-1].im = ap[i-1].im;
}
for (i = 1; i <= n; ++i)
{
    for (j = 1; j <= nrhs; ++j)
    {
        X(i, j).re = B(i, j).re;
        X(i, j).im = B(i, j).im;
    }
}

/* Factorize A in the array AFP */
/* nag_zhptrf (f07prc). */
/* Bunch-Kaufman factorization of complex Hermitian */
/* indefinite matrix, packed storage */
/* nag_zhptrf(order, uplo, n, afp, ipiv, &fail); */
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_zhptrf (f07prc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Compute solution in the array X */
/* nag_zhptrs (f07psc). */
/* Solution of complex Hermitian indefinite system of linear */
/* equations, multiple right-hand sides, matrix already */
/* factorized by nag_zhptrf (f07prc), packed storage */
/* nag_zhptrs(order, uplo, n, nrhs, afp, ipiv, x, pdx, &fail); */
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_zhptrs (f07psc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Improve solution, and compute backward errors and */
/* estimated bounds on the forward errors */
/* nag_zhprfs (f07pvc). */
/* Refined solution with error bounds of complex Hermitian */
* indefinite system of linear equations, multiple
* right-hand sides, packed storage
*/

nag_zhprfs(order, uplo, n, nrhs, ap, afp, ipiv, b, pdb, x, pdx, ferr, berr, &fail);
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_zhprfs (f07pvc).\n" fail.message);
    exit_status = 1;
    goto END;
}

/* Print solution */
/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/

fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
    nrhs, x, pdx, Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
    0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n" fail.message);
    exit_status = 1;
    goto END;
}

printf("Backward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
    printf("%11.1e%s", berr[j-1], j%4 == 0?"\n":" ");
printf("Estimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
    printf("%11.1e%s", ferr[j-1], j%4 == 0?"\n":" ");
print("\n");

END:
NAG_FREE(ipiv);
NAG_FREE(afp);
NAG_FREE(ap);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(ferr);
return exit_status;

10.2 Program Data

nag_zhprfs (f07pvc) Example Program Data

<table>
<thead>
<tr>
<th>Values of n and nrhs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value of uplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nag_Lower</td>
</tr>
</tbody>
</table>

(-1.36, 0.00)
(1.58, -0.90)
(-0.77, -16.05)
(2.98, -10.18)
(1.58, 0.21)
(3.91, -1.50)
(7.79, 5.48)
(-0.77, -16.05)
(-9.58, 3.88)
(2.98, -10.18)
(2.21, 0.21)
(1.58, -0.90)
(3.91, -1.50)
(7.79, 5.48)
(-0.77, -16.05)
(-9.58, 3.88)

10.3 Program Results

nag_zhprfs (f07pvc) Example Program Results

Solution(s) 1 2
1 ( 1.0000, -1.0000) (3.0000, -4.0000)
2 (-1.0000, 2.0000) (-1.0000, 5.0000)
3 (3.0000, -2.0000) (7.0000, -2.0000)
4 (2.0000, 1.0000) (-8.0000, 6.0000)
Backward errors (machine-dependent)
5.7e-17  5.8e-17

Estimated forward error bounds (machine-dependent)
2.5e-15  3.1e-15