NAG Library Function Document

nag_zhesvx (f07mpc)

1 Purpose

nag_zhesvx (f07mpc) uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations

\[AX = B, \]

where \(A \) is an \(n \) by \(n \) Hermitian matrix and \(X \) and \(B \) are \(n \) by \(r \) matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

```
#include <nag.h>
#include <nagf07.h>

void nag_zhesvx (Nag_OrderType order, Nag_FactoredFormType fact,
                Nag_UploType uplo, Integer n, Integer nrhs, const Complex a[],
                Integer pda, Complex af[], Integer pdaf, Integer ipiv[],
                const Complex b[], Integer pdb, Complex x[], Integer pdx,
                double *rcond, double ferr[], double berr[], NagError *fail)
```

3 Description

nag_zhesvx (f07mpc) performs the following steps:

1. If \(\text{fact} = \text{Nag_NotFactored} \), the diagonal pivoting method is used to factor \(A \). The form of the factorization is \(A = UDU^H \) if \(\text{uplo} = \text{Nag_Upper} \) or \(A = LDL^H \) if \(\text{uplo} = \text{Nag_Lower} \), where \(U \) (or \(L \)) is a product of permutation and unit upper (lower) triangular matrices, and \(D \) is Hermitian and block diagonal with 1 by 1 and 2 by 2 diagonal blocks.

2. If some \(d_{ii} = 0 \), so that \(D \) is exactly singular, then the function returns with \(\text{fail_errno} = i \) and \(\text{fail_code} = \text{NE_SINGULAR} \). Otherwise, the factored form of \(A \) is used to estimate the condition number of the matrix \(A \). If the reciprocal of the condition number is less than \(\text{machine_precision} \), \(\text{fail_code} = \text{NE_SINGULAR_WP} \) is returned as a warning, but the function still goes on to solve for \(X \) and compute error bounds as described below.

3. The system of equations is solved for \(X \) using the factored form of \(A \).

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error bounds and backward error estimates for it.

4 References

5 Arguments

1: \(\textit{order} \rightarrow \text{Nag_OrderType}\) \(\text{Input}\)

 \(\textit{On entry:}\) the \(\textit{order}\) argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \(\textit{order} = \text{Nag_RowMajor}\). See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 \(\text{Constraint: } \textit{order} = \text{Nag_RowMajor or Nag_ColMajor}\).

2: \(\textit{fact} \rightarrow \text{Nag_FactoredFormType}\) \(\text{Input}\)

 \(\textit{On entry:}\) specifies whether or not the factorized form of the matrix \(A\) has been supplied.

 \(\textit{fact} = \text{Nag_Factored}\)

 \(\textit{af}\) and \(\textit{ipiv}\) contain the factorized form of the matrix \(A\). \(\textit{af}\) and \(\textit{ipiv}\) will not be modified.

 \(\textit{fact} = \text{Nag_NotFactored}\)

 The matrix \(A\) will be copied to \(\textit{af}\) and factorized.

 \(\text{Constraint: } \textit{fact} = \text{Nag_Factored or Nag_NotFactored}\).

3: \(\textit{uplo} \rightarrow \text{Nag_UploType}\) \(\text{Input}\)

 \(\textit{On entry:}\) if \(\textit{uplo} = \text{Nag_Upper}\), the upper triangle of \(A\) is stored.

 If \(\textit{uplo} = \text{Nag_Lower}\), the lower triangle of \(A\) is stored.

 \(\text{Constraint: } \textit{uplo} = \text{Nag_Upper or Nag_Lower}\).

4: \(n \rightarrow \text{Integer}\) \(\text{Input}\)

 \(\textit{On entry:}\) \(n\), the number of linear equations, i.e., the order of the matrix \(A\).

 \(\text{Constraint: } n \geq 0\).

5: \(\textit{nrhs} \rightarrow \text{Integer}\) \(\text{Input}\)

 \(\textit{On entry:}\) \(r\), the number of right-hand sides, i.e., the number of columns of the matrix \(B\).

 \(\text{Constraint: } \textit{nrhs} \geq 0\).

6: \(\textit{a}[\textit{dim}] \rightarrow \text{const Complex}\) \(\text{Input}\)

 \(\text{Note:}\) the dimension, \(\textit{dim}\), of the array \(\textit{a}\) must be at least \(\max(1, \textit{pda} \times n)\).

 \(\textit{On entry:}\) the \(n\) by \(n\) Hermitian matrix \(A\).

 If \(\textit{order} = \text{Nag_ColMajor}\), \(A_{ij}\) is stored in \(\textit{a}[(j - 1) \times \textit{pda} + i - 1]\).

 If \(\textit{order} = \text{Nag_RowMajor}\), \(A_{ij}\) is stored in \(\textit{a}[(i - 1) \times \textit{pda} + j - 1]\).

 If \(\textit{uplo} = \text{Nag_Upper}\), the upper triangular part of \(A\) must be stored and the elements of the array below the diagonal are not referenced.

 If \(\textit{uplo} = \text{Nag_Lower}\), the lower triangular part of \(A\) must be stored and the elements of the array above the diagonal are not referenced.

7: \(\textit{pda} \rightarrow \text{Integer}\) \(\text{Input}\)

 \(\textit{On entry:}\) the stride separating row or column elements (depending on the value of \(\textit{order}\)) of the matrix \(A\) in the array \(\textit{a}\).

 \(\text{Constraint: } \textit{pda} \geq \max(1, n)\).

8: \(\textit{af}[\textit{dim}] \rightarrow \text{Complex}\) \(\text{Input/Output}\)

 \(\text{Note:}\) the dimension, \(\textit{dim}\), of the array \(\textit{af}\) must be at least \(\max(1, \textit{pda} \times n)\).
The (i,j)th element of the matrix is stored in

\[\text{af}[(j - 1) \times \text{pdaf} + i - 1] \text{ when order = Nag_ColMajor}; \]
\[\text{af}[(i - 1) \times \text{pdaf} + j - 1] \text{ when order = Nag_RowMajor}. \]

On entry: if \text{fact} = \text{Nag_Factored}, \text{af} contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $\mathbf{a} = \mathbf{UDU}^H$ or $\mathbf{a} = \mathbf{LDL}^H$ as computed by \text{nag_zhetrf} (f07mrc).

On exit: if \text{fact} = \text{Nag_NotFactored}, \text{af} returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $\mathbf{a} = \mathbf{UDU}^H$ or $\mathbf{a} = \mathbf{LDL}^H$.

9: \text{pdaf} – Integer

\text{On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array af.}

\text{Constraint: pdaf} \geq \max(1, n).

10: \text{ipiv}[\text{dim}] – Integer

\text{On entry: if fact} = \text{Nag_Factored, ipiv} contains details of the interchanges and the block structure of D, as determined by \text{nag_zhetrf} (f07mrc).

\text{if} \text{ipiv}[(i - 1)] = k > 0, d_{ii} is a 1 by 1 pivot block and the ith row and column of A were interchanged with the kth row and column;

\text{if} \text{uplo} = \text{Nag_Upper and ipiv}[i - 2] = \text{ipiv}[i - 1] = -l < 0, \begin{pmatrix} d_{i-1,i-1} & \text{d}_{i,i-1} \\ \text{d}_{i,i-1} & d_{ii} \end{pmatrix} \text{ is a 2 by 2 pivot block and the} (i - 1)\text{th row and column of } A \text{ were interchanged with the} l\text{th row and column};

\text{if} \text{uplo} = \text{Nag_Lower and ipiv}[i - 1] = \text{ipiv}[i] = -m < 0, \begin{pmatrix} d_{ii} & d_{i+1,i} \\ d_{i+1,i} & d_{i+1,i+1} \end{pmatrix} \text{ is a 2 by 2 pivot block and the} (i + 1)\text{th row and column of } A \text{ were interchanged with the} m\text{th row and column.}

On exit: if \text{fact} = \text{Nag_NotFactored, ipiv} contains details of the interchanges and the block structure of D, as determined by \text{nag_zhetrf} (f07mrc), as described above.

11: \text{b}[\text{dim}] – \text{const Complex}

\text{On entry: the n by r right-hand side matrix } B.\text{n}

\text{Note: the dimension, dim, of the array b must be at least} \max(1, \text{pdb} \times \text{nrhs}) \text{ when order} = \text{Nag_ColMajor;}
\max(1, n \times \text{pdb}) \text{ when order} = \text{Nag_RowMajor.}

The (i,j)th element of the matrix B is stored in

\[\text{b}[(j - 1) \times \text{pdb} + i - 1] \text{ when order} = \text{Nag_ColMajor}; \]
\[\text{b}[(i - 1) \times \text{pdb} + j - 1] \text{ when order} = \text{Nag_RowMajor}. \]

On entry: the n by r right-hand side matrix B.

12: \text{pdb} – Integer

\text{On entry: the stride separating row or column elements (depending on the value of order) in the array b.}

\text{Constraints:}

\text{if order} = \text{Nag_ColMajor, pdb} \geq \max(1, n); \text{if order} = \text{Nag_RowMajor, pdb} \geq \max(1, \text{nrhs}).
13: \[x[di\text{m}] \] – Complex

Note: the dimension, \(dim \), of the array \(x \) must be at least
\(\max(1, \text{pd}\text{x} \times \text{nrhs}) \) when \(\text{order} = \text{Nag_Col_Major} \);
\(\max(1, n \times \text{pd}\text{x}) \) when \(\text{order} = \text{Nag_Row_Major} \).

The \((i,j)\)th element of the matrix \(X \) is stored in
\(x[(j-1) \times \text{pd}\text{x} + i - 1] \) when \(\text{order} = \text{Nag_Col_Major} \);
\(x[(i-1) \times \text{pd}\text{x} + j - 1] \) when \(\text{order} = \text{Nag_Row_Major} \).

On exit: if \(\text{fail_code} = \text{NE_NO_ERROR} \) or \(\text{NE_SINGULAR_WP} \), the \(n \) by \(r \) solution matrix \(X \).

14: \(\text{pd}\text{x} \) – Integer

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) in the array \(x \).

Constraints:
if \(\text{order} = \text{Nag_Col_Major} \), \(\text{pd}\text{x} \geq \max(1, n) \);
if \(\text{order} = \text{Nag_Row_Major} \), \(\text{pd}\text{x} \geq \max(1, \text{nrhs}) \).

15: \(\text{r}\text{cond} \) – double *

On exit: the estimate of the reciprocal condition number of the matrix \(A \). If \(\text{r}\text{cond} = 0.0 \), the matrix may be exactly singular. This condition is indicated by \(\text{fail_code} = \text{NE_SINGULAR} \). Otherwise, if \(\text{r}\text{cond} \) is less than the \textbf{machine precision}, the matrix is singular to working precision. This condition is indicated by \(\text{fail_code} = \text{NE_SINGULAR_WP} \).

16: \(\text{ferr}[\text{dim}] \) – double

Note: the dimension, \(\text{dim} \), of the array \(\text{ferr} \) must be at least \(\max(1, \text{nrhs}) \).

On exit: if \(\text{fail_code} = \text{NE_NO_ERROR} \) or \(\text{NE_SINGULAR_WP} \), an estimate of the forward error bound for each computed solution vector, such that
\(\|\hat{x}_j - x_j\|/\|x_j\| \leq \text{ferr}[j-1] \) where \(\hat{x}_j \) is the \(j \)th column of the computed solution returned in the array \(x \) and \(x_j \) is the corresponding column of the exact solution \(X \). The estimate is as reliable as the estimate for \(\text{r}\text{cond} \), and is almost always a slight overestimate of the true error.

17: \(\text{berr}[\text{dim}] \) – double

Note: the dimension, \(\text{dim} \), of the array \(\text{berr} \) must be at least \(\max(1, \text{nrhs}) \).

On exit: if \(\text{fail_code} = \text{NE_NO_ERROR} \) or \(\text{NE_SINGULAR_WP} \), an estimate of the component-wise relative backward error of each computed solution vector \(\hat{x}_j \) (i.e., the smallest relative change in any element of \(A \) or \(B \) that makes \(\hat{x}_j \) an exact solution).

18: \(\text{fail} \) – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle\text{value}\rangle \) had an illegal value.
NE_INT

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(nrhs = \langle \text{value} \rangle \).
Constraint: \(nrhs \geq 0 \).

On entry, \(pda = \langle \text{value} \rangle \).
Constraint: \(pda > 0 \).

On entry, \(pdaf = \langle \text{value} \rangle \).
Constraint: \(pdaf > 0 \).

On entry, \(pdb = \langle \text{value} \rangle \).
Constraint: \(pdb > 0 \).

On entry, \(pdx = \langle \text{value} \rangle \).
Constraint: \(pdx > 0 \).

NE_INT_2

On entry, \(pda = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1, n) \).

On entry, \(pdaf = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(pdaf \geq \max(1, n) \).

On entry, \(pdb = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(pdb \geq \max(1, n) \).

On entry, \(pdb = \langle \text{value} \rangle \) and \(nrhs = \langle \text{value} \rangle \).
Constraint: \(pdb \geq \max(1, nrhs) \).

On entry, \(pdx = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(pdx \geq \max(1, n) \).

On entry, \(pdx = \langle \text{value} \rangle \) and \(nrhs = \langle \text{value} \rangle \).
Constraint: \(pdx \geq \max(1, nrhs) \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

Element \(\langle \text{value} \rangle \) of the diagonal is exactly zero. The factorization has been completed, but the factor \(D \) is exactly singular, so the solution and error bounds could not be computed. \(rcond = 0.0 \) is returned.

NE_SINGULAR_WP

\(D \) is nonsingular, but \(rcond \) is less than \textit{machine precision}, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of \(rcond \) would suggest.
7 Accuracy

For each right-hand side vector b, the computed solution \hat{x} is the exact solution of a perturbed system of equations $(A + E)\hat{x} = b$, where

$$\|E\|_1 = O(\epsilon)\|A\|_1,$$

where ϵ is the *machine precision*. See Chapter 11 of Higham (2002) for further details.

If \hat{x} is the true solution, then the computed solution x satisfies a forward error bound of the form

$$\frac{\|x - \hat{x}\|_\infty}{\|\hat{x}\|_\infty} \leq w_c \text{cond}(A, \hat{x}, b),$$

where $\text{cond}(A, \hat{x}, b) = \|\|A^{-1}\|\|A\|\|/\|\hat{x}\|_\infty \leq \text{cond}(A) = \|\|A^{-1}\|\|A\|\| \leq \kappa_\infty(A)$. If \hat{x} is the jth column of X, then w_c is returned in $\text{berr}[j-1]$ and a bound on $\|x - \hat{x}\|_\infty/\|\hat{x}\|_\infty$ is returned in $\text{ferr}[j-1]$. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

$nag_{_}\text{hesvx}$ (f07mpc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

$nag_{_}\text{hesvx}$ (f07mpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately $4n^3$ floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of $16n^2$ floating-point operations. Each step of iterative refinement involves an additional $24n^2$ operations. At most five steps of iterative refinement are performed, but usually only one or two steps are required. Estimating the forward error involves solving a number of systems of equations of the form $AX = b$; the number is usually 4 or 5 and never more than 11. Each solution involves approximately $8n^2$ operations.

The real analogue of this function is $nag_{_}\text{dsyvx}$ (f07mbc). The complex symmetric analogue of this function is $nag_{_}\text{zsyvx}$ (f07npc).

10 Example

This example solves the equations

$$AX = B,$$

where A is the Hermitian matrix

$$A = \begin{pmatrix} 1.84 & 0.11 - 0.11i & -1.78 - 1.18i & 3.91 - 1.50i \\ 0.11 + 0.11i & -4.63 & -1.84 + 0.03i & 2.21 + 0.21i \\ -1.78 + 1.18i & -1.84 - 0.03i & -8.87 & 1.58 - 0.90i \\ 3.91 + 1.50i & 2.21 - 0.21i & 1.58 + 0.90i & -1.36 \end{pmatrix}$$

and

$$B = \begin{pmatrix} 2.98 - 10.18i & 28.68 - 39.89i \\ -9.58 + 3.88i & -24.79 - 8.40i \\ -0.77 - 16.05i & 4.23 - 70.02i \\ 7.79 + 5.48i & -35.39 + 18.01i \end{pmatrix}.$$
10.1 Program Text

/* nag_zhesvx (f07mpc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 23, 2011. */

#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>

int main(void)
{
 /* Scalars */
 double rcond;
 Integer exit_status = 0, i, j, n, nrhs, pda, pdaf, pdb, pdx;

 /* Arrays */
 Complex *a = 0, *af = 0, *b = 0, *x = 0;
 double *berr = 0, *ferr = 0;
 Integer *ipiv = 0;
 char nag_enum_arg[40];

 /* Nag Types */
 NagError fail;
 Nag_UploType uplo;
 Nag_OrderType order;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I, J) a[(J-1)*pda + I-1]
 #define B(I, J) b[(J-1)*pdb + I-1]
 order = Nag_ColMajor;
 #else
 #define A(I, J) a[(I-1)*pda+J-1]
 #define B(I, J) b[(I-1)*pdb +J-1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);

 printf("nag_zhesvx (f07mpc) Example Program Results\n\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*\n");
 #else
 scanf("%*\n");
 #endif
 #ifdef _WIN32
 scanf_s("%39s%*\n", nag_enum_arg, _countof(nag_enum_arg));
 #else
 scanf("%39s%*\n", nag_enum_arg, _countof(nag_enum_arg));
 #endif
 if (n < 0 || nrhs < 0)
 {
 printf("Invalid n or nrhs\n");
 exit_status = 1;
 goto END;
 }
 scanf_s("%39s%*\n", nag_enum_arg, _countof(nag_enum_arg));
 #else

Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the matrix A are also output.
scanf(" %39s%\n", nag_enum_arg);
#endif
/* nag_enum_name_to_value (x04nac).
 * Converts NAG enum member name to value
 */
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);

#ifdef NAG_COLUMN_MAJOR
pda = n;
pdaf = n;
#else
pdb = n;
pdx = n;
#endif
/* Allocate memory */
if (!a = NAG_ALLOC(n * n, Complex)) ||
!(af = NAG_ALLOC(n * n, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * nrhs, Complex)) ||
!(berr = NAG_ALLOC(nrhs, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) ||
!(ipiv = NAG_ALLOC(n, Integer)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
pda = n;
pdaf = n;
#endif
/* Read the triangular part of A from data file */
if (uplo == Nag_Upper)
 for (i = 1; i <= n; ++i)
 for (j = i; j <= n; ++j)
#else
 for (i = 1; i <= n; ++i)
 for (j = 1; j <= i; ++j)
#endif
 scanf_s(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
#endif
/* Solve the equations AX = B for X using nag_zhesvx (f07mpc). */
ienza{f07mpc}(order, Nag_NotFactored, uplo, n, nrhs, a, pda, af, pdaf, ipiv,
b, pdb, x, pdx, &rcond, ferr, berr, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)
{
 printf("Error from nag_zhesvx (f07mpc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print solution using nag_gen_complex_mat_print_comp (x04dbc). */
fflush(stdout);
nag_gen_complex_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, x, pdx, Nag_BracketForm, "%7.4f",
"Solution(s)", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_complex_mat_print_comp (x04dbc).\n%s\n",
fail.message);
 exit_status = 1;
 goto END;
}

/* Print error bounds and condition number */
printf("\nBackward errors (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", berr[j], j%7 == 6?"\n":" ");
printf("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], j%7 == 6?"\n":" ");
printf("\nEstimate of reciprocal condition number\n%11.1e\n", rcond);
if (fail.code == NE_SINGULAR)
{
 printf("Error from nag_zhesvx (f07mpc).\n%s\n", fail.message);
 exit_status = 1;
}
END:
NAG_FREE(a);
NAG_FREE(af);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(berr);
NAG_FREE(ferr);
NAG_FREE(ipiv);

return exit_status;
}
#endif

10.2 Program Data

nag_zhesvx (f07mpc) Example Program Data

<table>
<thead>
<tr>
<th>n</th>
<th>nrhs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

matrix A

-1.84, 0.00	0.11, -0.11	-1.78, -1.18	3.91, -1.50
-4.63, 0.00	-1.84, 0.03	2.21, 0.21	
-8.87, 0.00	1.58, -0.90		
-1.36, 0.00			

matrix B

2.98, -10.18	28.68, -39.89
-9.58, 3.88	-24.79, -8.40
-0.77, -16.05	4.23, -70.02
7.79, 5.49	-35.39, 18.01
10.3 Program Results

nag_zhesvx (f07mpc) Example Program Results

Solution(s)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2.0000, 1.0000)</td>
<td>(-8.0000, 6.0000)</td>
</tr>
<tr>
<td>2</td>
<td>(3.0000, -2.0000)</td>
<td>(7.0000, -2.0000)</td>
</tr>
<tr>
<td>3</td>
<td>(-1.0000, 2.0000)</td>
<td>(-1.0000, 5.0000)</td>
</tr>
<tr>
<td>4</td>
<td>(1.0000, -1.0000)</td>
<td>(3.0000, -4.0000)</td>
</tr>
</tbody>
</table>

Backward errors (machine-dependent)
5.1e-17 5.9e-17

Estimated forward error bounds (machine-dependent)
2.5e-15 3.0e-15

Estimate of reciprocal condition number
1.5e-01