NAG Library Function Document

nag_zgbsvx (f07bpc)

1 Purpose

nag_zgbsvx (f07bpc) uses the LU factorization to compute the solution to a complex system of linear equations

\[AX = B, \quad A^T X = B \quad \text{or} \quad A^H X = B, \]

where A is an n by n band matrix with k_l subdiagonals and k_u superdiagonals, and X and B are n by r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

```c
#include <nag.h>
#include <nagf07.h>

void nag_zgbsvx (Nag_OrderType order, Nag_FactoredFormType fact, 
                 Nag_TransType trans, Integer n, Integer kl, Integer ku, Integer nrhs, 
                 Complex ab[], Integer pdab, Complex afb[], Integer pdaafb, 
                 Integer ipiv[], Nag_EquilibrationType *equed, double r[], double c[], 
                 Complex b[], Integer pdb, Complex x[], Integer pdx, double *rcond, 
                 double ferr[], double berr[], double *recip_growth_factor, 
                 NagError *fail)
```

3 Description

nag_zgbsvx (f07bpc) performs the following steps:

1. Equilibration

The linear system to be solved may be badly scaled. However, the system can be equilibrated as a first stage by setting `fact = Nag_EquilibrateAndFactor`. In this case, real scaling factors are computed and these factors then determine whether the system is to be equilibrated. Equilibrated forms of the systems $AX = B$, $A^T X = B$ and $A^H X = B$ are

\[
(D_R A D_C) (D_C^{-1} X) = D_R B,
\]

\[
(D_R A D_C)^T (D_R^{-1} X) = D_C B,
\]

and

\[
(D_R A D_C)^H (D_R^{-1} X) = D_C B,
\]

respectively, where D_R and D_C are diagonal matrices, with positive diagonal elements, formed from the computed scaling factors.

When equilibration is used, A will be overwritten by $D_R A D_C$ and B will be overwritten by $D_R B$ (or $D_C B$ when the solution of $A^T X = B$ or $A^H X = B$ is sought).

2. Factorization

The matrix A, or its scaled form, is copied and factored using the LU decomposition

\[A = PLU, \]

where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are supplied; for example, as provided by a previous call to nag_zgbsvx (f07bpc) with the same matrix A.

3. **Condition Number Estimation**

 The LU factorization of A determines whether a solution to the linear system exists. If some diagonal element of U is zero, then U is exactly singular, no solution exists and the function returns with a failure. Otherwise the factorized form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than *machine precision* then a warning code is returned on final exit.

4. **Solution**

 The (equilibrated) system is solved for X (D_C^{-1}X or D_R^{-1}X) using the factored form of A (D_R A D_C).

5. **Iterative Refinement**

 Iterative refinement is applied to improve the computed solution matrix and to calculate error bounds and backward error estimates for the computed solution.

6. **Construct Solution Matrix X**

 If equilibration was used, the matrix X is premultiplied by D_C (if *trans* = Nag_NoTrans) or D_R (if *trans* = Nag_Trans or Nag_ConjTrans) so that it solves the original system before equilibration.

4 **References**

5 **Arguments**

1: **order** – Nag_OrderType

 Input

 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **fact** – Nag_FactoredFormType

 Input

 On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factorized.

 fact = Nag_Factored

 abf and ipiv contain the factorized form of A. If equed ≠ Nag_NoEquilibration, the matrix A has been equilibrated with scaling factors given by r and c. ab, abf and ipiv are not modified.

 fact = Nag_NotFactored

 The matrix A will be copied to abf and factorized.

 fact = Nag_EquilibrateAndFactor

 The matrix A will be equilibrated if necessary, then copied to abf and factorized.

 Constraint: fact = Nag_Factored, Nag_NotFactored or Nag_EquilibrateAndFactor.
3: \textbf{trans} – Nag_TransType
 \textit{Input}

 \textit{On entry:} specifies the form of the system of equations.

 \textbf{trans} = Nag_NoTrans
 \hspace{1cm} AX = B (No transpose).

 \textbf{trans} = Nag_Trans
 \hspace{1cm} A^T X = B (Transpose).

 \textbf{trans} = Nag_ConjTrans
 \hspace{1cm} A^H X = B (Conjugate transpose).

 \textbf{Constraint:} trans = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

4: \textbf{n} – Integer
 \textit{Input}

 \textit{On entry:} \textit{n}, the number of linear equations, i.e., the order of the matrix \(A \).

 \textbf{Constraint:} n \geq 0.

5: \textbf{kl} – Integer
 \textit{Input}

 \textit{On entry:} \textit{kl}, the number of subdiagonals within the band of the matrix \(A \).

 \textbf{Constraint:} kl \geq 0.

6: \textbf{ku} – Integer
 \textit{Input}

 \textit{On entry:} \textit{ku}, the number of superdiagonals within the band of the matrix \(A \).

 \textbf{Constraint:} ku \geq 0.

7: \textbf{nrhs} – Integer
 \textit{Input}

 \textit{On entry:} \textit{r}, the number of right-hand sides, i.e., the number of columns of the matrix \(B \).

 \textbf{Constraint:} nrhs \geq 0.

8: \textbf{ab[dim]} – Complex
 \textit{Input/Output}

 \textbf{Note:} the dimension, \textit{dim}, of the array \textit{ab} must be at least \(\max(1, pdab \times n) \).

 \textit{On entry:} the \textit{n} by \textit{n} coefficient matrix \(A \).

 This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements \(A_{ij} \), for row \(i = 1, \ldots, n \) and column \(j = \max(1, i - kl), \ldots, \min(n, i + ku) \), depends on the \textit{order} argument as follows:

 - if \textit{order} = Nag_ColMajor, \(A_{ij} \) is stored as \(\textbf{ab}[(j - 1) \times pdab + ku + i - j] \);
 - if \textit{order} = Nag_RowMajor, \(A_{ij} \) is stored as \(\textbf{ab}[(i - 1) \times pdab + kl + j - i] \).

 See Section 9 for further details.

 If \textbf{fact} = Nag_Factored and \textbf{equed} \neq Nag_NoEquilibration, \(A \) must have been equilibrated by the scaling factors in \textbf{r} and/or \textbf{c}.

 \textit{On exit:} if \textbf{fact} = Nag_Factored or Nag_NotFactored, or if \textbf{fact} = Nag_EquilbrateAndFactor and \textbf{equed} = Nag_NoEquilibration, \textbf{ab} is not modified.

 If \textbf{equed} \neq Nag_NoEquilibration then, if no constraints are violated, \(A \) is scaled as follows:

 - if \textbf{equed} = Nag_RowEquilibration, \(A = D_r A \);
 - if \textbf{equed} = Nag_ColumnEquilibration, \(A = AD_c \);
 - if \textbf{equed} = Nag_RowAndColumnEquilibration, \(A = D_r AD_c \).
9: \textbf{pdab} – Integer
\textit{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \texttt{order}) of the matrix A in the array \texttt{ab}.

\textit{Constraint:} $\texttt{pdab} \geq kl + ku + 1$.

10: \textbf{afb}[\textit{dim}] – Complex
\textit{Input/Output}

\textit{Note:} the dimension, \textit{dim}, of the array \texttt{afb} must be at least $\max(1,\texttt{pdafb} \times n)$.

\textit{On entry:} if \texttt{fact} = \texttt{Nag_NotFactored} or \texttt{Nag_EquilibrateAndFactor}, \texttt{afb} need not be set.

If \texttt{fact} = \texttt{Nag_Factored}, details of the LU factorization of the n by n band matrix A, as computed by \texttt{nag_zgbtrf (f07brc)}.

The elements, u_{ij}, of the upper triangular band factor U with $k_l + k_u$ super-diagonals, and the multipliers, l_{ij}, used to form the lower triangular factor L are stored. The elements u_{ij}, for $i = 1, \ldots, n$ and $j = i, \ldots, \min(n, i + k_l + k_u)$, and l_{ij}, for $i = 1, \ldots, n$ and $j = \max(1, i - k_l), \ldots, i$, are stored where A_{ij} is stored on entry.

If \texttt{equed} \neq \texttt{Nag_NoEquilibration}, \texttt{afb} is the factorized form of the equilibrated matrix A.

\textit{On exit:} if \texttt{fact} = \texttt{Nag_Factored}, \texttt{afb} is unchanged from entry.

Otherwise, if no constraints are violated, then if \texttt{fact} = \texttt{Nag_NotFactored} or \texttt{Nag_EquilibrateAndFactor}, \texttt{afb} returns details of the LU factorization of the band matrix A, and if \texttt{fact} = \texttt{Nag_EquilibrateAndFactor}, \texttt{afb} returns details of the LU factorization of the equilibrated band matrix A (see the description of \texttt{ab} for the form of the equilibrated matrix).

11: \textbf{pdafb} – Integer
\textit{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \texttt{order}) of the matrix A in the array \texttt{afb}.

\textit{Constraint:} $\texttt{pdafb} \geq 2 \times kl + ku + 1$.

12: \textbf{ipiv}[\textit{dim}] – Integer
\textit{Input/Output}

\textit{Note:} the dimension, \textit{dim}, of the array \texttt{ipiv} must be at least $\max(1, n)$.

\textit{On entry:} if \texttt{fact} = \texttt{Nag_NotFactored} or \texttt{Nag_EquilibrateAndFactor}, \texttt{ipiv} need not be set.

If \texttt{fact} = \texttt{Nag_Factored}, \texttt{ipiv} contains the pivot indices from the factorization $A = LU$, as computed by \texttt{nag_zgbtrf (f07bdc)}; row i of the matrix was interchanged with row $\texttt{ipiv}[i - 1]$.

\textit{On exit:} if \texttt{fact} = \texttt{Nag_Factored}, \texttt{ipiv} is unchanged from entry.

Otherwise, if no constraints are violated, \texttt{ipiv} contains the pivot indices that define the permutation matrix P; at the ith step row i of the matrix was interchanged with row $\texttt{ipiv}[i - 1]$. $\texttt{ipiv}[i - 1] = i$ indicates a row interchange was not required.

If \texttt{fact} = \texttt{Nag_NotFactored}, the pivot indices are those corresponding to the factorization $A = LU$ of the original matrix A.

If \texttt{fact} = \texttt{Nag_EquilibrateAndFactor}, the pivot indices are those corresponding to the factorization of $A = LU$ of the equilibrated matrix A.

13: \textbf{equed} – \texttt{Nag_EquilibrationType} *
\textit{Input/Output}

\textit{On entry:} if \texttt{fact} = \texttt{Nag_NotFactored} or \texttt{Nag_EquilibrateAndFactor}, \texttt{equed} need not be set.

If \texttt{fact} = \texttt{Nag_Factored}, \texttt{equed} must specify the form of the equilibration that was performed as follows:

if \texttt{equed} = \texttt{Nag_NoEquilibration}, no equilibration;

if \texttt{equed} = \texttt{Nag_RowEquilibration}, row equilibration, i.e., A has been premultiplied by D_R;
if **equed** = Nag_ColumnEquilibration, column equilibration, i.e., \(A \) has been postmultiplied by \(D_C \);

if **equed** = Nag_RowAndColumnEquilibration, both row and column equilibration, i.e., \(A \) has been replaced by \(D_RAD_C \).

On exit: if **fact** = Nag_Factored, **equed** is unchanged from entry.

Otherwise, if no constraints are violated, **equed** specifies the form of equilibration that was performed as specified above.

Constraint: if **fact** = Nag_Factored, **equed** = Nag_NoEquilibration, Nag_RowEquilibration, Nag_ColumnEquilibration or Nag_RowAndColumnEquilibration.

14: **r**[**dim**] – double

Input/Output

Note: the dimension, **dim**, of the array **r** must be at least \(\max(1, n) \).

On entry: if **fact** = Nag_NotFactored or Nag_EquilbrateAndFactor, **r** need not be set.

If **fact** = Nag_Factored or **equed** = Nag_RowEquilibration or Nag_RowAndColumnEquilibration, **r** must contain the row scale factors for \(A, D_R \); each element of **r** must be positive.

On exit: if **fact** = Nag_Factored, **r** is unchanged from entry.

Otherwise, if no constraints are violated and **equed** = Nag_RowEquilibration or Nag_RowAndColumnEquilibration, **r** contains the row scale factors for \(A, D_R \); such that \(A \) is multiplied on the left by \(D_R \); each element of **r** is positive.

15: **c**[**dim**] – double

Input/Output

Note: the dimension, **dim**, of the array **c** must be at least \(\max(1, n) \).

On entry: if **fact** = Nag_NotFactored or Nag_EquilbrateAndFactor, **c** need not be set.

If **fact** = Nag_Factored or **equed** = Nag_ColumnEquilibration or Nag_RowAndColumnEquilibration, **c** must contain the column scale factors for \(A, D_C \); each element of **c** must be positive.

On exit: if **fact** = Nag_Factored, **c** is unchanged from entry.

Otherwise, if no constraints are violated and **equed** = Nag_ColumnEquilibration or Nag_RowAndColumnEquilibration, **c** contains the row scale factors for \(A, D_C \); each element of **c** is positive.

16: **b**[**dim**] – Complex

Input/Output

Note: the dimension, **dim**, of the array **b** must be at least

\[
\max(1, \text{pdb} \times nrhs) \quad \text{when} \quad \text{order} = \text{Nag_ColMajor};
\]

\[
\max(1, n \times \text{pdb}) \quad \text{when} \quad \text{order} = \text{Nag_RowMajor}.
\]

The \((i, j)\)th element of the matrix \(B \) is stored in

\[
\text{b}[(j - 1) \times \text{pdb} + i - 1] \quad \text{when} \quad \text{order} = \text{Nag_ColMajor};
\]

\[
\text{b}[(i - 1) \times \text{pdb} + j - 1] \quad \text{when} \quad \text{order} = \text{Nag_RowMajor}.
\]

On entry: the \(n \) by \(r \) right-hand side matrix \(B \).

On exit: if **equed** = Nag_NoEquilibration, **b** is not modified.

If **trans** = Nag_NoTrans or **equed** = Nag_RowEquilibration or Nag_RowAndColumnEquilibration, **b** is overwritten by \(D_RB \).

If **trans** = Nag_Trans or Nag_ConjTrans and **equed** = Nag_ColumnEquilibration or Nag_RowAndColumnEquilibration, **b** is overwritten by \(D_CB \).
17: **pdb** – Integer

Input

On entry: the stride separating row or column elements (depending on the value of **order** in the array **b**.

Constraints:

if **order** = Nag_ColMajor, **pdb** ≥ max(1, **n**);
if **order** = Nag_RowMajor, **pdb** ≥ max(1, **nrhs**).

18: **x[dim]** – Complex

Output

Note: the dimension, **dim**, of the array **x** must be at least

max(1, **pdb** × **nrhs**) when **order** = Nag_ColMajor;
max(1, **n** × **pdb**) when **order** = Nag_RowMajor.

The (i, j)th element of the matrix **X** is stored in

- **x**[(j − 1) × **pdb** + i − 1] when **order** = Nag_ColMajor;
- **x**[(i − 1) × **pdb** + j − 1] when **order** = Nag_RowMajor.

On exit: if **fail.code** = NE_NOERROR or NE_SINGULAR_WP, the n by r solution matrix **X** to the original system of equations. Note that the arrays **A** and **B** are modified on exit if **equed** ≠ Nag_NoEquilibration, and the solution to the equilibrated system is **D**⁻¹**X** if **trans** = Nag_NoTrans and **equed** = Nag_ColumnEquilibration or **equed** = Nag_RowAndColumnEquilibration, or **D**⁻¹**X** if **trans** = Nag_Trans or Nag_ConjTrans and **equed** = Nag_RowEquilibration or Nag_RowAndColumnEquilibration.

19: **pdx** – Integer

Input

On entry: the stride separating row or column elements (depending on the value of **order** in the array **x**.

Constraints:

if **order** = Nag_ColMajor, **pdx** ≥ max(1, **n**);
if **order** = Nag_RowMajor, **pdx** ≥ max(1, **nrhs**).

20: **rcond** – double *

Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the matrix **A** (after equilibration if that is performed), computed as

\[rcond = 1.0 / \left(\frac{\| A \|_1 \| A^{-1} \|_1}{1} \right) \]

21: **ferr[nrhs]** – double

Output

On exit: if **fail.code** = NE_NOERROR or NE_SINGULAR_WP, an estimate of the componentwise relative backward error of each computed solution vector \(\hat{x}_j \) (i.e., the smallest relative change in any element of **A** or **B** that makes \(\hat{x}_j \) an exact solution).

22: **berr[nrhs]** – double

Output

On exit: if **fail.code** = NE_NOERROR or NE_SINGULAR_WP, an estimate of the componentwise relative backward error of each computed solution vector \(\hat{x}_j \) (i.e., the smallest relative change in any element of **A** or **B** that makes \(\hat{x}_j \) an exact solution).

23: **recip_growth_factor** – double *

Output

On exit: if **fail.code** = NE_NOERROR, the reciprocal pivot growth factor \(\| A \| / \| U \| \), where \(\| . \| \) denotes the maximum absolute element norm. If **recip_growth_factor** ≪ 1, the stability of the LU factorization of (equilibrated) **A** could be poor. This also means that the solution **x**, condition estimate **rcond**, and forward error bound **ferr** could be unreliable. If the factorization fails with
fail.code = NE_SINGULAR, then recip.growth_factor contains the reciprocal pivot growth factor for the leading fail.errnum columns of \(A \).

24: fail – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\langle value \rangle \) had an illegal value.

NE_INT
On entry, \(kl = \langle value \rangle \).
Constraint: \(kl \geq 0 \).

On entry, \(ku = \langle value \rangle \).
Constraint: \(ku \geq 0 \).

On entry, \(n = \langle value \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(nrhs = \langle value \rangle \).
Constraint: \(nrhs \geq 0 \).

On entry, \(pdab = \langle value \rangle \).
Constraint: \(pdab > 0 \).

On entry, \(pdafb = \langle value \rangle \).
Constraint: \(pdafb > 0 \).

On entry, \(pdb = \langle value \rangle \).
Constraint: \(pdb > 0 \).

On entry, \(pdx = \langle value \rangle \).
Constraint: \(pdx > 0 \).

NE_INT_2
On entry, \(pdb = \langle value \rangle \) and \(n = \langle value \rangle \).
Constraint: \(pdb \geq \max(1,n) \).

On entry, \(pdb = \langle value \rangle \) and \(nrhs = \langle value \rangle \).
Constraint: \(pdb \geq \max(1,nrhs) \).

On entry, \(pdx = \langle value \rangle \) and \(n = \langle value \rangle \).
Constraint: \(pdx \geq \max(1,n) \).

On entry, \(pdx = \langle value \rangle \) and \(nrhs = \langle value \rangle \).
Constraint: \(pdx \geq \max(1,nrhs) \).

NE_INT_3
On entry, \(pdab = \langle value \rangle \), \(kl = \langle value \rangle \) and \(ku = \langle value \rangle \).
Constraint: \(pdab \geq kl + ku + 1 \).

On entry, \(pdafb = \langle value \rangle \), \(kl = \langle value \rangle \) and \(ku = \langle value \rangle \).
Constraint: \(pdafb \geq 2 \times kl + ku + 1 \).
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

Element (value) of the diagonal is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed. \(\text{rcond} = 0.0\) is returned.

NE_SINGULAR_WP

\(U\) is nonsingular, but \(\text{rcond}\) is less than \textit{machine precision}, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of \(\text{rcond}\) would suggest.

7 Accuracy

For each right-hand side vector \(b\), the computed solution \(\hat{x}\) is the exact solution of a perturbed system of equations \((A + E)\hat{x} = b\), where

\[|E| \leq c(n)\epsilon P\|L\|\|U\|, \]

\(c(n)\) is a modest linear function of \(n\), and \(\epsilon\) is the \textit{machine precision}. See Section 9.3 of Higham (2002) for further details.

If \(x\) is the true solution, then the computed solution \(\hat{x}\) satisfies a forward error bound of the form

\[\frac{\|x - \hat{x}\|_\infty}{\|\hat{x}\|_\infty} \leq w_c \text{cond}(A, \hat{x}, b) \]

where \(\text{cond}(A, \hat{x}, b) = \|A^{-1}\| \|A\| \|\hat{x}\|/\|\hat{x}\|_\infty \leq \text{cond}(A) = \|A^{-1}\| \|A\|/\kappa_\infty(A)\). If \(\hat{x}\) is the \(j\)th column of \(X\), then \(w_c\) is returned in \(\text{berr}[j-1]\) and a bound on \(\|x - \hat{x}\|_\infty/\|\hat{x}\|_\infty\) is returned in \(\text{ferr}[j-1]\). See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

\texttt{f07bpc} (f07bpc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

\texttt{f07bpc} (f07bpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array ab is illustrated by the following example, when $n = 6$, $k_l = 1$, and $k_u = 2$. Storage of the band matrix A in the array ab:

<table>
<thead>
<tr>
<th>order = Nag_ColMajor</th>
<th>order = Nag_RowMajor</th>
</tr>
</thead>
<tbody>
<tr>
<td>* * a_{13} a_{24} a_{35} a_{46}</td>
<td>* a_{11} a_{12} a_{13}</td>
</tr>
<tr>
<td>a_{11} a_{22} a_{33} a_{44} a_{55} a_{66}</td>
<td>a_{21} a_{22} a_{23} a_{24}</td>
</tr>
<tr>
<td>a_{21} a_{32} a_{43} a_{54} a_{65} *</td>
<td>a_{32} a_{33} a_{34} a_{35}</td>
</tr>
</tbody>
</table>

The total number of floating-point operations required to solve the equations $AX = B$ depends upon the pivoting required, but if $n \gg k_l + k_u$ then it is approximately bounded by $O(n(k_l + k_u))$ for the factorization and $O(n(2k_l + k_u)r)$ for the solution following the factorization. The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization. The solution is then refined, and the errors estimated, using iterative refinement; see nag_zgbrfs (f07bvc) for information on the floating-point operations required.

In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.

The real analogue of this function is nag_dgbsvx (f07bbc).

10 Example

This example solves the equations

$$AX = B,$$

where A is the band matrix

$$A = \begin{pmatrix}
-1.65 + 2.26i & -2.05 - 0.85i & 0.97 - 2.84i & 0 \\
6.30i & -1.48 - 1.75i & -3.99 + 4.01i & 0.59 - 0.48i \\
0 & -0.77 + 2.83i & -1.06 + 1.94i & 3.33 - 1.04i \\
0 & 0 & 4.48 - 1.09i & -0.46 - 1.72i
\end{pmatrix}$$

and

$$B = \begin{pmatrix}
-1.06 + 21.50i & 12.85 + 2.84i \\
-22.72 - 53.90i & -70.22 + 21.57i \\
28.24 - 38.60i & -20.73 + 1.23i \\
-34.56 + 16.73i & 26.01 + 31.97i
\end{pmatrix}.$$
/* Scalars */
double growth_factor, rcond;
Integer exit_status = 0, i, j, kl, ku, n, nrhs, pdab, pdafb,
pdb, pdx;

/* Arrays */
Complex *ab = 0, *afb = 0, *b = 0, *x = 0;
double *berr = 0, *c = 0, *ferr = 0, *r = 0;
Integer *ipiv = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_EquilibrationType equed;

#ifdef NAG_COLUMN_MAJOR
#define AB(I, J) ab[(J-1)*pdab + ku + I - J]
#define B(I, J) b[(J-1)*pdb + I - 1]
#else
#define AB(I, J) ab[(I-1)*pdab + kl + J - I]
#define B(I, J) b[(I-1)*pdb + J - 1]
#endif

INIT_FAIL(fail);
printf("nag_zgbsvx (f07bpc) Example Program Results\n\n");

#ifdef _WIN32
scanf_s("%*[^
\]\n", &n, &nrhs, &kl, &ku);
#else
scanf("%*[\"\n\"");
#endif

if (n < 0 || kl < 0 || ku < 0 || nrhs < 0)
{
 printf("Invalid n or kl or ku or nrhs\n");
 exit_status = 1;
 goto END;
}

/* Allocate memory */
if (!(!ab = NAG_ALLOC((kl+ku+1) * n, Complex)) ||
!afb = NAG_ALLOC((2*kl+ku+1) * n, Complex)) ||
!b = NAG_ALLOC(n * nrhs, Complex)) ||
!x = NAG_ALLOC(n * nrhs, Complex)) ||
!berr = NAG_ALLOC(nrhs, double)) ||
!c = NAG_ALLOC(n, double)) ||
!ferr = NAG_ALLOC(nrhs, double)) ||
!r = NAG_ALLOC(n, double)) ||
!ipiv = NAG_ALLOC(n, Integer))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
pdab = kl+ku+1;
pdafb = 2*kl+ku+1;
#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;
#else
/* Read the band matrix A and B from data file */
for (i = 1; i <= n; ++i)
 for (j = MAX(i - kl, 1); j <= MIN(i + ku, n); ++j)
 #ifdef _WIN32
 scanf_s(" (%lf , %lf)", &AB(i, j).re, &AB(i, j).im);
 #else
 scanf(" (%lf , %lf)", &AB(i, j).re, &AB(i, j).im);
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n"]);
 #else
 scanf("%*[\n"]);
 #endif
for (i = 1; i <= n; ++i)
 for (j = 1; j <= nrhs; ++j)
 #ifdef _WIN32
 scanf_s(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
 #else
 scanf(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n"]);
 #else
 scanf("%*[\n"]);
 #endif
/* Solve the equations AX = B for X using nag_zgbsvx (f07bpc). */
nag_zgbsvx(order, Nag_EquilibrateAndFactor, Nag_NoTrans, n, kl, ku, nrhs, ab,
 pdab, afb, pdafb, ipiv, &equed, r, c, b, pdb, x, pdx, &rcond,
 ferr, berr, &growth_factor, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)
{
 printf("Error from nag_zgbsvx (f07bpc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print solution using nag_gen_complx_mat_print_comp (x04dbc). */
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, x, pdx, Nag_BracketForm, "%7.4f",
"Solution(s)", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print error bounds, condition number, the form of equilibration
* and the pivot growth factor */
printf("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
 printf("%11.1e%s", berr[j - 1], j%7 == 0?"\n":" ");
printf("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
 printf("%11.1e%s", ferr[j - 1], j%7 == 0?"\n":" ");
printf("\nEstimate of reciprocal condition number\n%11.1e\n", rcond);
if (equed == Nag_NoEquilibration)
 printf("A has not been equilibrated\n");
else if (equed == Nag_RowEquilibration)
 printf("A has been row scaled as diag(R)*A\n\n");
else if (equed == Nag_ColumnEquilibration)
 printf("A has been column scaled as A*diag(C)\n\n");
else if (equed == Nag_RowAndColumnEquilibration)
 printf("A has been row and column scaled as diag(R)*A*diag(C)\n\n");

printf("\nEstimate of reciprocal pivot growth factor\n%11.1e\n",
growth_factor);
if (fail.code == NE_SINGULAR)
 printf("Error from nag_zgbsvx (f07bpc).\n%s\n", fail.message);
END:
NAG_FREE(ab);
NAG_FREE(afb);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(berr);
NAG_FREE(ferr);
NAG_FREE(r);
NAG_FREE(ipiv);

return exit_status;
}
#undef AB
#undef B

10.2 Program Data

nag_zgbsvx (f07bpc) Example Program Data

<table>
<thead>
<tr>
<th>n</th>
<th>nrhs</th>
<th>kl</th>
<th>ku</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

(-1.65, 2.26) (-2.05, 0.85) (0.97, -2.84)
(0.00, 6.30) (-1.48, -1.75) (-3.99, 4.01) (0.59, -0.48)
(-0.77, 2.83) (-1.06, 1.94) (3.33, -1.04)
(4.48, -1.09) (-0.46, -1.72) : matrix A

(-1.06, 21.50) (12.85, 2.84)
(-22.72, -53.90) (-70.22, 21.57)
(28.24, -38.60) (-20.73, -1.23)
(-34.56, 16.73) (26.01, 31.97) : matrix B

10.3 Program Results

nag_zgbsvx (f07bpc) Example Program Results

Solution(s)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-3.0000, 2.0000)</td>
<td>(1.0000, 6.0000)</td>
</tr>
<tr>
<td>2</td>
<td>(1.0000, -7.0000)</td>
<td>(-7.0000, -4.0000)</td>
</tr>
<tr>
<td>3</td>
<td>(-5.0000, 4.0000)</td>
<td>(3.0000, 5.0000)</td>
</tr>
<tr>
<td>4</td>
<td>(6.0000, -8.0000)</td>
<td>(-8.0000, 2.0000)</td>
</tr>
</tbody>
</table>

Backward errors (machine-dependent)
1.8e-17 6.7e-17

Estimated forward error bounds (machine-dependent)
3.5e-14 4.3e-14

Estimate of reciprocal condition number
9.6e-03

A has not been equilibrated

Estimate of reciprocal pivot growth factor
1.0e+00