NAG Library Function Document
nag_real_sym_packed_lin_solve (f04bjc)

1 Purpose
nag_real_sym_packed_lin_solve (f04bjc) computes the solution to a real system of linear equations
$AX = B$, where A is an n by n symmetric matrix, stored in packed format and X and B are n by r
matrices. An estimate of the condition number of A and an error bound for the computed solution are
also returned.

2 Specification

#include <nag.h>
#include <nagf04.h>
void nag_real_sym_packed_lin_solve (Nag_OrderType order, Nag_UploType uplo,
 Integer n, Integer nrhs, double ap[], Integer ipiv[], double b[],
 Integer pdb, double *rcond, double *errbnd, NagError *fail)

3 Description
The diagonal pivoting method is used to factor A as $A = UDU^T$, if $\text{uplo} = \text{Nag_Upper}$, or $A = LDL^T$, if
$\text{uplo} = \text{Nag_Lower}$, where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored
form of A is then used to solve the system of equations $AX = B$.

4 References
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments
1: order – Nag_OrderType
 Input
 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
 major ordering or column-major ordering. C language defined storage is specified by
 order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
 explanation of the use of this argument.
 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo – Nag_UploType
 Input
 On entry: if uplo = Nag_upper, the upper triangle of the matrix A is stored.
 If uplo = Nag_lower, the lower triangle of the matrix A is stored.
 Constraint: uplo = Nag_upper or Nag_lower.

3: n – Integer
 Input
 On entry: the number of linear equations n, i.e., the order of the matrix A.
 Constraint: $n \geq 0$.

4: \(\textbf{nrhs} \) – Integer

\textit{Input}

\textit{On entry:} the number of right-hand sides \(r \), i.e., the number of columns of the matrix \(B \).

\textit{Constraint:} \(\textbf{nrhs} \geq 0 \).

5: \(\textbf{ap}[\text{dim}] \) – double

\textit{Input/Output}

\textit{Note:} the dimension, \(\text{dim} \), of the array \(\textbf{ap} \) must be at least \(\max(1, \text{n} \times \text{(n + 1)}/2) \).

\textit{On entry:} the \(n \) by \(n \) symmetric matrix \(A \), packed column-wise in a linear array. The \(j \)th column of the matrix \(A \) is stored in the array \(\textbf{ap} \) as follows:

The storage of elements \(A_{ij} \) depends on the \textbf{order} and \textbf{uplo} arguments as follows:

\[\begin{align*}
\text{if} \quad \textbf{order} &= \text{Nag_ColMajor} \text{ and } \textbf{uplo} = \text{Nag_Upper}, \quad A_{ij} \text{ is stored in } \textbf{ap}[(j-1) \times j/2 + i - 1], \text{for } i \leq j; \\
\text{if} \quad \textbf{order} &= \text{Nag_ColMajor} \text{ and } \textbf{uplo} = \text{Nag_Lower}, \\
& \qquad A_{ij} \text{ is stored in } \textbf{ap}[(2n-j) \times (j-1)/2 + i - 1], \text{for } i \geq j; \\
\text{if} \quad \textbf{order} &= \text{Nag_RowMajor} \text{ and } \textbf{uplo} = \text{Nag_Upper}, \\
& \quad A_{ij} \text{ is stored in } \textbf{ap}[(2n-i) \times (i-1)/2 + j - 1], \text{for } i \leq j; \\
\text{if} \quad \textbf{order} &= \text{Nag_RowMajor} \text{ and } \textbf{uplo} = \text{Nag_Lower}, \\
& \quad A_{ij} \text{ is stored in } \textbf{ap}[(i-1) \times i/2 + j - 1], \text{for } i \geq j.
\end{align*} \]

\textit{On exit:} if \(\textbf{fail} = \text{NE_NOERROR} \), the block diagonal matrix \(D \) and the multipliers used to obtain the factor \(U \) or \(L \) from the factorization \(A = UDUT \) or \(A = LDL^T \) as computed by nag_dsptrf (f07pdc), stored as a packed triangular matrix in the same storage format as \(A \).

6: \(\textbf{ipiv}[\text{n}] \) – Integer

\textit{Output}

\textit{On exit:} if \(\textbf{fail} = \text{NE_NOERROR} \), details of the interchanges and the block structure of \(D \), as determined by nag_dsptrf (f07pdc).

If \(\textbf{ipiv}[k - 1] > 0 \), then rows and columns \(k \) and \(\textbf{ipiv}[k - 1] \) were interchanged, and \(d_{kk} \) is a 1 by 1 diagonal block;

\textit{if} \(\textbf{uplo} = \text{Nag_Upper} \text{ and } \textbf{ipiv}[k - 1] = \textbf{ipiv}[k - 2] < 0 \), then rows and columns \(k - 1 \) and \(k \) were interchanged and \(d_{k,k-1,k-1,k} \) is a 2 by 2 diagonal block;

\textit{if} \(\textbf{uplo} = \text{Nag_Lower} \text{ and } \textbf{ipiv}[k - 1] = \textbf{ipiv}[k] < 0 \), then rows and columns \(k + 1 \) and \(k \) were interchanged and \(d_{k,k+1,k+1,k} \) is a 2 by 2 diagonal block.

7: \(\textbf{b}[\text{dim}] \) – double

\textit{Input/Output}

\textit{Note:} the dimension, \(\text{dim} \), of the array \(\textbf{b} \) must be at least

\[\max(1, \text{n} \times \text{nrhs}) \text{ when } \textbf{order} = \text{Nag_ColMajor}; \]

\[\max(1, \text{n} \times \text{pdb}) \text{ when } \textbf{order} = \text{Nag_RowMajor}. \]

The \((i,j) \)th element of the matrix \(B \) is stored in

\[\begin{align*}
\textbf{b}[(j-1) \times \text{pdb} + i - 1] & \text{ when } \textbf{order} = \text{Nag_ColMajor}; \\
\textbf{b}[(i-1) \times \text{pdb} + j - 1] & \text{ when } \textbf{order} = \text{Nag_RowMajor}.
\end{align*} \]

\textit{On entry:} the \(n \) by \(r \) matrix of right-hand sides \(B \).

\textit{On exit:} if \(\textbf{fail} = \text{NE_NOERROR} \text{ or } \text{NE_RCOND} \), the \(n \) by \(r \) solution matrix \(X \).

8: \(\textbf{pdb} \) – Integer

\textit{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \textbf{order}) in the array \(\textbf{b} \).

\textit{Constraints:}

\[\begin{align*}
\text{if } \textbf{order} &= \text{Nag_ColMajor}, \quad \textbf{pdb} \geq \max(1, \text{n}); \\
\text{if } \textbf{order} &= \text{Nag_RowMajor}, \quad \textbf{pdb} \geq \max(1, \text{nrhs}).
\end{align*} \]
9: \texttt{rcond} – double * \hspace{1cm} \textit{Output}

\textit{On exit:} if no constraints are violated, an estimate of the reciprocal of the condition number of the matrix \(A \), computed as \(\text{rcond} = 1/(\|A\|_1 \|A^{-1}\|_1) \).

10: \texttt{errbnd} – double * \hspace{1cm} \textit{Output}

\textit{On exit:} if \texttt{fail.code} = \texttt{NE_NOERROR} or \texttt{NE_RCOND}, an estimate of the forward error bound for a computed solution \(\hat{x} \), such that \(\| \hat{x} - x \|_1 / \| x \|_1 \leq \text{errbnd} \), where \(\hat{x} \) is a column of the computed solution returned in the array \(b \) and \(x \) is the corresponding column of the exact solution \(X \). If \texttt{rcond} is less than \textit{machine precision}, then \texttt{errbnd} is returned as unity.

11: \texttt{fail} – NagError * \hspace{1cm} \textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \ Error Indicators and Warnings

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \langle value \rangle had an illegal value.

\textbf{NE_INT}

On entry, \(n = \langle value \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(nrhs = \langle value \rangle \).
Constraint: \(nrhs \geq 0 \).

On entry, \(pdb = \langle value \rangle \).
Constraint: \(pdb > 0 \).

\textbf{NE_INT_2}

On entry, \(pdb = \langle value \rangle \) and \(n = \langle value \rangle \).
Constraint: \(pdb \geq \text{max}(1, n) \).

On entry, \(pdb = \langle value \rangle \) and \(nrhs = \langle value \rangle \).
Constraint: \(pdb \geq \text{max}(1, nrhs) \).

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

\textbf{NE_NO_LICENCE}

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

\textbf{NE_RCOND}

A solution has been computed, but \texttt{rcond} is less than \textit{machine precision} so that the matrix \(A \) is numerically singular.
Diagonal block \(\langle \text{value} \rangle \) of the block diagonal matrix is zero. The factorization has been completed, but the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, \(\hat{x} \), satisfies an equation of the form

\[
(A + E)\hat{x} = b,
\]

where

\[
\|E\|_1 = O(\epsilon \|A\|_1)
\]

and \(\epsilon \) is the *machine precision*. An approximate error bound for the computed solution is given by

\[
\frac{\|\hat{x} - x\|_1}{\|x\|_1} \leq \kappa(A) \frac{\|E\|_1}{\|A\|_1},
\]

where \(\kappa(A) = \|A^{-1}\|_1 \|A\|_1 \), the condition number of \(A \) with respect to the solution of the linear equations. \texttt{nag_real_sym_packed_lin_solve} (f04bjc) uses the approximation \(\|E\|_1 = \epsilon \|A\|_1 \) to estimate \texttt{errbnd}. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

\texttt{nag_real_sym_packed_lin_solve} (f04bjc) is not threaded by NAG in any implementation. \texttt{nag_real_sym_packed_lin_solve} (f04bjc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The Integer allocatable memory required is \(n \), and the double allocatable memory required is \(2 \times n \). Allocation failed before the solution could be computed.

The packed storage scheme is illustrated by the following example when \(n = 4 \) and \texttt{uplo} = Nag_Upper. Two-dimensional storage of the symmetric matrix \(A \):

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{22} & a_{23} & a_{24} & \\
 a_{33} & a_{34} & \\
 a_{44} &
\end{bmatrix}
\]

Packed storage of the upper triangle of \(A \):

\[
ap = [a_{11}, a_{12}, a_{22}, a_{13}, a_{23}, a_{33}, a_{14}, a_{24}, a_{34}, a_{44}]
\]

The total number of floating-point operations required to solve the equations \(AX = B \) is proportional to \((\frac{1}{3}n^3 + 2n^2r) \). The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.

The complex analogues of \texttt{nag_real_sym_packed_lin_solve} (f04bjc) are \texttt{nag_herm_packed_lin_solve} (f04cjc) for complex Hermitian matrices, and \texttt{nag_complex_sym_packed_lin_solve} (f04djc) for complex symmetric matrices.
10 Example

This example solves the equations

\[AX = B, \]

where \(A \) is the symmetric indefinite matrix

\[
A = \begin{pmatrix}
-1.81 & 2.06 & 0.63 & -1.15 \\
2.06 & 1.15 & 1.87 & 4.20 \\
0.63 & 1.87 & -0.21 & 3.87 \\
-1.15 & 4.20 & 3.87 & 2.07
\end{pmatrix}
\]

and \(B = \begin{pmatrix}
0.96 \\
6.07 \\
8.38 \\
9.50
\end{pmatrix} \) and \(B = \begin{pmatrix}
3.93 \\
19.25 \\
9.90 \\
27.85
\end{pmatrix} \).

An estimate of the condition number of \(A \) and an approximate error bound for the computed solutions are also printed.

10.1 Program Text

/* nag_real_sym_packed_lin_solve (f04bjc) Example Program. */
* Copyright 2014 Numerical Algorithms Group.
* * Mark 8, 2004. */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 double errbnd, rcond;
 Integer exit_status, i, j, n, nrhs, pdb;
 /* Arrays */
 char nag_enum_arg[40];
 double *ap = 0, *b = 0;
 Integer *ipiv = 0;
 /* Nag types */
 NagError fail;
 Nag_OrderType order;
 Nag_UploType uplo;
 #ifdef NAG_COLUMN_MAJOR
 #define A_UPPER(I, J) ap[J*(J-1)/2 + I - 1]
 #define A_LOWER(I, J) ap[(2*n-J)*(J-1)/2 + I - 1]
 #define B(I, J) b[(J-1)*pdb + I - 1]
 order = Nag_ColMajor;
 #else
 #define A_LOWER(I, J) ap[I*(I-1)/2 + J - 1]
 #define A_UPPER(I, J) ap[(2*n-I)*(J-1)/2 + I - 1]
 #define B(I, J) b[(I-1)*pdb + J - 1]
 order = Nag_RowMajor;
 #endif
 exit_status = 0;
 INIT_FAIL(fail);
 printf(
 "nag_real_sym_packed_lin_solve (f04bjc) Example Program Results\n\n";
 /* Skip heading in data file */
 #ifdef _WIN32
 scanf("%*[^\n] ");
 #endif

Mark 25
#else
 scanf("%*[\n] ");
#endif
#ifdef _WIN32
 scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &n, &nrhs);
#else
 scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &n, &nrhs);
#endif
if (n > 0 && nrhs > 0)
{
 /* Allocate memory */
 if (!(ap = NAG_ALLOC(n*(n+1)/2, double)) ||
 !(b = NAG_ALLOC(n*nrhs, double)) ||
 !(ipiv = NAG_ALLOC(n, Integer)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
#ifdef NAG_COLUMN_MAJOR
 pdb = n;
#else
 pdb = nrhs;
#endif
} else
{
 printf("%s\n", "n and/or nrhs too small");
 exit_status = 1;
 return exit_status;
}
#ifdef _WIN32
 scanf_s("%39s%*[\n] ", nag_enum_arg, _countof(nag_enum_arg));
#else
 scanf("%39s%*[\n] ", nag_enum_arg);
#endif
/* nag_enum_name_to_value (x04nac).
 * Converts NAG enum member name to value */
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
/* Read the upper or lower triangular part of the matrix A from */
/* data file */
if (uplo == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 {
 #ifdef _WIN32
 scanf_s("%lf", &A_UPPER(i, j));
 #else
 scanf("%lf", &A_UPPER(i, j));
 #endif
 }
 }
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif
#else
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 {
 #ifdef _WIN32
 scanf_s("%lf", &A_LOWER(i, j));
 #else
 scanf("%lf", &A_LOWER(i, j));
 #endif
 }
 }
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif
} else
{ /* Match the case of the WIN32 version when not compiling for WIN32 */
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 {
 #ifdef _WIN32
 scanf_s("%lf", &A_LOWER(i, j));
 #else
 scanf("%lf", &A_LOWER(i, j));
 #endif
 }
 }
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif
}
/* Read B from data file */
for (i = 1; i <= n; ++i)
 { for (j = 1; j <= nrhs; ++j)
 { #ifdef _WIN32
 scanf_s("%lf", &B(i, j));
 #else
 scanf("%lf", &B(i, j));
 #endif
 }
 #ifdef _WIN32
 scanf_s("%*[\n] ");
 #else
 scanf("%*[\n] ");
 #endif
 }

/* Solve the equations AX = B for X */
/* nag_real_sym_packed_lin_solve (f04bjc). */
/* Computes the solution and error-bound to a real symmetric */
/* system of linear equations, packed storage */

nag_real_sym_packed_lin_solve(order, uplo, n, nrhs, ap, ipiv, b, pdb,
&rcond, &errbnd, &fail);
if (fail.code == NE_NOERROR)
 {
 /* Print solution, estimate of condition number and approximate */
 /* error bound */
 /* nag_gen_real_mat_print (x04cac).
 * Print real general matrix (easy-to-use)
 */
 fflush(stdout);
 nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, b, pdb, "Solution", 0, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 printf("\n");
 printf("%s\n6%10.1e\n", "Estimate of condition number", "",
1.0/rcond);
 printf("\n");
 printf("%s\n6%10.1e\n", "Estimate of error bound for computed solutions", "", errbnd);
 }
else if (fail.code == NE_RCOND)
 {
 /* Matrix A is numerically singular. Print estimate of */
 /* reciprocal of condition number and solution */

Mark 25
printf("\n");
printf("%s\n6s%10.1e\n\n", "Estimate of reciprocal of condition number", "", rcond);
printf("\n"); /* nag_gen_real_mat_print (x04cac), see above. */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_real_mat_print (x04cac).\n%ss\n", fail.message);
 exit_status = 1;
 goto END;
}
else if (fail.code == NE_SINGULAR)
{
 /* The upper triangular matrix U is exactly singular. Print */
 /* details of factorization */
 printf("\n"); /* nag_pack_real_mat_print (x04ccc). */
 * Print real packed triangular matrix (easy-to-use) */
 fflush(stdout);
nag_pack_real_mat_print(order, Nag_Upper, Nag_NonUnitDiag, n, ap, "Details of factorization", 0, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_pack_real_mat_print (x04ccc).\n%ss\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print pivot indices */
printf("\n");
printf("%s\n%3s", "Pivot indices", "");
for (i = 1; i <= n; ++i)
{
 printf("%11"NAG_IFMT%ss", ipiv[i - 1], i%7 == 0 || i == n?"\n":" ");
}
printf("\n");
}
else
{
 printf("Error from nag_real_sym_packed_lin_solve (f04bjc).\n%ss\n", fail.message);
 exit_status = 1;
 goto END;
}
END:
NAG_FREE(ap);
NAG_FREE(b);
NAG_FREE(ipiv);
return exit_status;
10.2 Program Data

nag_real_sym_packed_lin_solve (f04bjc) Example Program Data

4 2 :Values of n and nrhs
Nag_Upper :Value of uplo
-1.81 2.06 0.63 -1.15
 1.15 1.87 4.20
-0.21 3.87
 2.07 :End of matrix A

0.96 3.93
6.07 19.25
8.38 9.90
9.50 27.85 :End of matrix B

10.3 Program Results

nag_real_sym_packed_lin_solve (f04bjc) Example Program Results

Solution 1 2
1 -5.0000 2.0000
2 -2.0000 3.0000
3 1.0000 4.0000
4 4.0000 1.0000

Estimate of condition number
 7.6e+01

Estimate of error bound for computed solutions
 8.4e-15