1 Purpose

nag_complex_svd (f02xec) returns all, or part, of the singular value decomposition of a general complex matrix.

2 Specification

```c
#include <nag.h>
#include <nagf02.h>

void nag_complex_svd (Integer m, Integer n, Complex a[], Integer tda,
                     Integer ncolb, Complex b[], Integer tdb, Nag_Boolean wantq, Complex q[],
                     Integer tdq, double sv[], Nag_Boolean wantp, Complex ph[], Integer tdph,
                     Integer *iter, double e[], Integer *failinfo, NagError *fail)
```

3 Description

The m by n matrix A is factorized as

$$A = QDP^H$$

where

$$D = \begin{cases}
S & m > n \\
0 & m = n \\
0 & m < n
\end{cases}$$

Q is an m by m unitary matrix, P is an n by n unitary matrix and S is a $\min(m,n)$ by $\min(m,n)$ diagonal matrix with real non-negative diagonal elements, $sv_1, sv_2, \ldots, sv_{\min(m,n)}$, ordered such that $sv_1 \geq sv_2 \geq \ldots \geq sv_{\min(m,n)} \geq 0$.

The first $\min(m,n)$ columns of Q are the left-hand singular vectors of A, the diagonal elements of S are the singular values of A and the first $\min(m,n)$ columns of P are the right-hand singular vectors of A.

Either or both of the left-hand and right-hand singular vectors of A may be requested and the matrix C given by

$$C = Q^H B$$

where B is an m by $ncolb$ given matrix, may also be requested.

The function obtains the singular value decomposition by first reducing A to upper triangular form by means of Householder transformations, from the left when $m \geq n$ and from the right when $m < n$. The upper triangular form is then reduced to bidiagonal form by Givens plane rotations and finally the QR algorithm is used to obtain the singular value decomposition of the bidiagonal form.

Good background descriptions to the singular value decomposition are given in Dongarra et al. (1979), Hammarling (1985) and Wilkinson (1978). Note that this function is not based on the LINPACK routine CSVDC.

Note that if K is any unitary diagonal matrix such that

$$KK^H = I$$

then
\[A = (Q \ K)D(P \ K)^H \]

is also a singular value decomposition of \(A \).

4 References

5 Arguments

1: \(m \) – Integer

 On entry: the number of rows, \(m \), of the matrix \(A \).

 Constraint: \(m \geq 0 \).

 When \(m = 0 \) then an immediate return is effected.

2: \(n \) – Integer

 On entry: the number of columns, \(n \), of the matrix \(A \).

 Constraint: \(n \geq 0 \).

 When \(n = 0 \) then an immediate return is effected.

3: \(a[m \times tda] \) – Complex

 Note: the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(i-1) \times tda + j-1] \).

 On entry: the leading \(m \) by \(n \) part of the array \(a \) must contain the matrix \(A \) whose singular value decomposition is required.

 On exit: if \(m \geq n \) and \(\text{wantq} = \text{Nag_TRUE} \), then the leading \(m \) by \(n \) part of \(a \) will contain the first \(n \) columns of the unitary matrix \(Q \).

 If \(m < n \) and \(\text{wantq} = \text{Nag_TRUE} \), then the leading \(m \) by \(n \) part of \(a \) will contain the first \(m \) rows of the unitary matrix \(P^H \).

 If \(m \geq n \) and \(\text{wantq} = \text{Nag_FALSE} \) and \(\text{wantp} = \text{Nag_TRUE} \), then the leading \(n \) by \(n \) part of \(a \) will contain the first \(n \) rows of the unitary matrix \(P^H \).

 Otherwise the contents of the leading \(m \) by \(n \) part of \(a \) are indeterminate.

4: \(tda \) – Integer

 On entry: the stride separating matrix column elements in the array \(a \).

 Constraint: \(tda \geq n \).

5: \(ncolb \) – Integer

 On entry: \(ncolb \), the number of columns of the matrix \(B \). When \(ncolb = 0 \) the array \(b \) is not referenced and may be \text{NULL}.

 Constraint: \(ncolb \geq 0 \).
6: \(\mathbf{b} [m \times \text{tdb}] \) – Complex
 \text{Input/Output}
 \textbf{Note:} the \((i, j)\)th element of the matrix \(B \) is stored in \(\mathbf{b}[(i-1) \times \text{tdb} + j-1] \).
 \text{On entry:} if \(\text{ncolb} > 0 \), the leading \(m \) by \(\text{ncolb} \) part of the array \(\mathbf{b} \) must contain the matrix to be transformed.
 If \(\text{ncolb} = 0 \) the array \(\mathbf{b} \) is not referenced and may be NULL.
 \text{On exit:} \(\mathbf{b} \) is overwritten by the \(m \) by \(\text{ncolb} \) matrix \(Q^H B \).

7: \(\text{tdb} \) – Integer
 \text{Input}
 \text{On entry:} the stride separating matrix column elements in the array \(\mathbf{b} \).
 \text{Constraint:} if \(\text{ncolb} > 0 \) then \(\text{tdb} \geq \text{nolb} \).

8: \(\text{wantq} \) – Nag_Boolean
 \text{Input}
 \text{On entry:} \(\text{wantq} \) must be Nag_TRUE if the left-hand singular vectors are required. If \(\text{wantq} = \text{Nag_FALSE} \) then the array \(\mathbf{q} \) is not referenced and may be NULL.

9: \(\mathbf{q} [m \times \text{tdq}] \) – Complex
 \text{Output}
 \text{Note:} the \((i, j)\)th element of the matrix \(Q \) is stored in \(\mathbf{q}[(i-1) \times \text{tdq} + j-1] \).
 \text{On exit:} if \(m < n \) and \(\text{wantq} = \text{Nag_TRUE} \), the leading \(m \) by \(m \) part of the array \(\mathbf{q} \) will contain the unitary matrix \(Q \). Otherwise the array \(\mathbf{q} \) is not referenced and may be NULL.

10: \(\text{tdq} \) – Integer
 \text{Input}
 \text{On entry:} the stride separating matrix column elements in the array \(\mathbf{q} \).
 \text{Constraint:} if \(m < n \) and \(\text{wantq} = \text{Nag_TRUE} \), \(\text{tdq} \geq m \)

11: \(\text{sv} [\min(m, n)] \) – double
 \text{Output}
 \text{On exit:} the \(\min(m, n) \) diagonal elements of the matrix \(S \).

12: \(\text{wantp} \) – Nag_Boolean
 \text{Input}
 \text{On entry:} \(\text{wantp} \) must be Nag_TRUE if the right-hand singular vectors are required. If \(\text{wantp} = \text{Nag_FALSE} \) then the array \(\mathbf{ph} \) is not referenced and may be NULL.

13: \(\mathbf{ph} [n \times \text{tdph}] \) – Complex
 \text{Output}
 \text{Note:} the \((i, j)\)th element of the matrix is stored in \(\mathbf{ph}[(i-1) \times \text{tdph} + j-1] \).
 \text{On exit:} if \(m \geq n \) and \(\text{wantq} \) and \(\text{wantp} \) are Nag_TRUE, the leading \(n \) by \(n \) part of the array \(\mathbf{ph} \) will contain the unitary matrix \(F^H \). Otherwise the array \(\mathbf{ph} \) is not referenced and may be NULL.

14: \(\text{tdph} \) – Integer
 \text{Input}
 \text{On entry:} the stride separating matrix column elements in the array \(\mathbf{ph} \).
 \text{Constraint:} if \(m \geq n \) and \(\text{wantq} = \text{Nag_TRUE} \) and \(\text{wantp} = \text{Nag_TRUE} \), \(\text{tdph} \geq n \)

15: \(\text{iter} \) – Integer *
 \text{Output}
 \text{On exit:} the total number of iterations taken by the \(QR \) algorithm.

16: \(\text{e} [\min(m, n)] \) – double
 \text{Output}
 \text{On exit:} if the error \text{NE_QR_NOT_CONV} occurs the array \(\mathbf{e} \) contains the super-diagonal elements of matrix \(E \) in the factorization of \(A \) according to \(A = QEP^H \). See Section 6 for further details.
17: **failinfo** – Integer *
Output

On exit: if the error NE_QR_NOT_CONV occurs **failinfo** contains the number of singular values which may not have been found correctly. See Section 6 for details.

18: **fail** – NagError *
Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, **tda** = *value* while **n** = *value*. These arguments must satisfy **tda** ≥ **n**.

On entry, **tdb** = *value* while **ncolb** = *value*. These arguments must satisfy **tdb** ≥ **ncolb**.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, **m** = *value*. Constraint: **m** ≥ 0.

On entry, **n** = *value*. Constraint: **n** ≥ 0.

On entry, **ncolb** = *value*. Constraint: **ncolb** ≥ 0.

NE_QR_NOT_CONV

The QR algorithm has failed to converge in *value* iterations. Singular values 1, 2, ..., **failinfo** may not have been found correctly and the remaining singular values may not be the smallest. The matrix **A** will nevertheless have been factorized as **A** = **QEP**T, where the leading min(m, n) by min(m, n) part of **E** is a bidiagonal matrix with sv[0], sv[1], ..., sv[min(m, n − 1)] as the diagonal elements and e[0], e[1], ..., e[min(m, n − 2)] as the super-diagonal elements. This failure is not likely to occur.

NE_TDP_LT_N

On entry, **tdph** = *value* while **n** = *value*. When **wantq** and **wantp** are Nag_TRUE and **m** ≥ **n** then relationship **tdph** ≥ **n** must be satisfied.

NE_TDQ_LT_M

On entry, **tdq** = *value* while **m** = *value*. When **wantq** is Nag_TRUE and **m** < **n** then relationship **tdq** ≥ **m** must be satisfied.

7 Accuracy

The computed factors **Q**, **D** and **P** satisfy the relation

$$QDP^H = A + E$$

where \(\|E\| \leq c\|A\|\), \(c\) being the machine precision, \(c\) is a modest function of \(m\) and \(n\) and . denotes the spectral (two) norm. Note that \(\|A\| = sv_1\).

8 Parallelism and Performance

Not applicable.
9 Further Comments

None.

10 Example

For this function two examples are presented. There is a single example program for nag_complex_svd (f02xec), with a main program and the code to solve the two example problems is given in the functions ex1 and ex2.

Example 1 (ex1)

To find the singular value decomposition of the 5 by 3 matrix

\[
A = \begin{pmatrix}
0.5i & -0.5 + 1.5i & -1.0 + 1.0i \\
0.4 + 0.3i & 0.9 + 1.3i & 0.2 + 1.4i \\
0.4 & -0.4 + 0.4i & 1.8 \\
0.3 - 0.4i & 0.1 + 0.7i & 0.0 \\
-0.3i & 0.3 + 0.3i & 2.4i
\end{pmatrix}
\]

together with the vector \(Q^Hb\) for the vector

\[
b = \begin{pmatrix}
-0.55 + 1.05i \\
0.49 + 0.93i \\
0.56 - 0.16i \\
0.39 + 0.23i \\
1.13 + 0.83i
\end{pmatrix}.
\]

Example 2 (ex2)

To find the singular value decomposition of the 3 by 5 matrix

\[
A = \begin{pmatrix}
0.5i & 0.4 - 0.3i & 0.4 & 0.3 + 0.4i & 0.3i \\
-0.5 - 1.5i & 0.9 - 1.3i & -0.4 - 0.4i & 0.1 - 0.7i & 0.3 - 0.3i \\
-1.0 - 1.0i & 0.2 - 1.4i & 1.8 & 0.0 & -2.4i
\end{pmatrix}
\]

10.1 Program Text

/* nag_complex_svd (f02xec) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 1, 1990. *
 * Mark 8 revised, 2004. */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf02.h>

#define COMPLEX(A) A.re, A.im
#define COMPLEX_CONJ(A) A.re, -A.im

static int ex1(void), ex2(void);

int main(void)
{
 Integer exit_status_ex1 = 0;
 Integer exit_status_ex2 = 0;

 printf("nag_complex_svd (f02xec) Example Program Results\n");
#ifdef _WIN32
 scanf_s(" %*[\n]"); /* Skip heading in data file */
#else
 scanf(" %*[\n]"); /* Skip heading in data file */
#endif
exit_status_ex1 = ex1();
exit_status_ex2 = ex2();

 return (exit_status_ex1 == 0 && exit_status_ex2 == 0) ? 0 : 1;
}

#define A(I, J) a[(I) *tda + J]
#define B(I, J) b[(I) *tdb + J]
#define PH(I, J) ph[(I) *tdph + J]

static int ex1(void)
{
 Nag_Boolean wantp, wantq;
 Complex *a = 0, *b = 0, *dummy = 0, *ph = 0;
 Integer exit_status = 0, failinfo, i, iter, j, m, n, ncolb, tda, tdb, tdph;
 NagError fail;
 double *e = 0, *sv = 0;

 INIT_FAIL(fail);

 printf("Example 1\n\n");
 #ifdef _WIN32
 scanf_s(" %*[\n"); /* Skip heading in data file */
 #else
 scanf(" %*[\n"); /* Skip heading in data file */
 #endif
 #ifdef _WIN32
 if (scanf_s("%"NAG_IFMT"%"NAG_IFMT", &m, &n) != EOF)
 {
 if (m >= 0 && n >= 0)
 {
 ncolb = 1;
 }
 }
 #else
 if (scanf("%"NAG_IFMT"%"NAG_IFMT", &m, &n) != EOF)
 {
 if (m >= 0 && n >= 0)
 {
 ncolb = 1;
 }
 }
 #endif
 if (!(e = NAG_ALLOC(MIN(m, n)-1, double)) ||
 !(sv = NAG_ALLOC(MIN(m, n), double)) ||
 !(a = NAG_ALLOC(m*n, Complex)) ||
 !(b = NAG_ALLOC(m*ncolb, Complex)) ||
 !(ph = NAG_ALLOC(n*n, Complex)) ||
 !(dummy = NAG_ALLOC(1, Complex)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 tda = n;
 tdb = ncolb;
 tdph = n;
}
else
{
 printf("Invalid m or n.\n");
 exit_status = 1;
 return exit_status;
}
for (i = 0; i < m; ++i)
 for (j = 0; j < n; ++j)
#ifdef _WIN32
 scanf_s("%lf%lf", COMPLEX(&A(i, j)));
#else
 scanf("%lf%lf", COMPLEX(&A(i, j)));
#endif
 for (i = 0; i < m; ++i)
for (j = 0; j < ncolb; ++j)
 scanf("%lf%lf", COMPLEX(&B(i, j)));
#endif

#ifndef _WIN32
 scanf("%lf%lf", COMPLEX(&B(i, j)));
#else
 scanf_s("%lf%lf", COMPLEX(&B(i, j)));
#endif

/* Find the SVD of A. */

wantq = Nag_TRUE;
wantp = Nag_TRUE;
/* nag_complex_svd (f02xec).
* SVD of complex matrix *
*/
nag_complex_svd(m, n, a, tda, ncolb, b, tdb, wantq,
 dummy, (Integer) 1, sv, wantp, ph, tdph, &iter,
 e, &failinfo, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_complex_svd (f02xec).
%s
", fail.message);
 exit_status = 1;
 goto END;
}
printf("Singular value decomposition of A\n\nSingular values\n");
for (i = 0; i < n; ++i)
 printf("%9.4f%s", sv[i], (i%5 == 4 || i == n-1) ? "\n" : "");
printf("\nLeft-hand singular vectors, by column\n");
for (i = 0; i < m; ++i)
 for (j = 0; j < n; ++j)
 printf("%7.4f %7.4f%s", COMPLEX(A(i, j)),
 (j%3 == 2 || j == n-1) ? "\n" : "");
printf("\nRight-hand singular vectors, by column\n");
for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j)
 printf("%7.4f %7.4f%s", COMPLEX_CONJ(PH(j, i)),
 (j%3 == 2 || j == n-1) ? "\n" : "");
printf("\nVector conjg(Q')*B\n");
for (i = 0; i < m; ++i)
 for (j = 0; j < ncolb; ++j)
 printf("%7.4f %7.4f%s", COMPLEX(B(i, j)),
 (i%3 == 2 || i == m-1) ? "\n" : "");
}
END:
NAG_FREE(e);
NAG_FREE(sv);
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(ph);
NAG_FREE(dummy);
return exit_status;

#define A(I, J) a[(I) *tda + J]
#define Q(I, J) q[(I) *tdq + J]

static int ex2(void)
{
 Nag_Boolean wantp, wantq;
 Complex *a = 0, *dummy = 0, *q = 0;
 Integer exit_status = 0, failinfo, i, iter, j, m, n, ncolb, tda, tdq;
 NagError fail;
 double *e = 0, *sv = 0;

 INIT_FAIL(fail);

 printf("\nExample 2\n\n");
#ifndef _WIN32
 scanf_s("%*[\n]"), /* Skip heading in data file */
#endif
```c
#ifelse
    scanf(" %*[\n]"); /* Skip heading in data file */
#endif
#ifdef _WIN32
    if (scanf_s("%"NAG_IFMT"%"NAG_IFMT"", &m, &n) != EOF)
#else
    if (scanf("%"NAG_IFMT"%"NAG_IFMT"", &m, &n) != EOF)
#endif
    {
        if (m >= 0 && n >= 0)
            {
                if (!(e = NAG_ALLOC(MIN(m, n)-1, double)) ||
                    !(sv = NAG_ALLOC(MIN(m, n), double)) ||
                    !(a = NAG_ALLOC(m*n, Complex)) ||
                    !(q = NAG_ALLOC(m*m, Complex)) ||
                    !(dummy = NAG_ALLOC(1, Complex)))
                    {
                        printf("Allocation failure\n");
#else
    if (scanf("%"NAG_IFMT"%"NAG_IFMT"", &m, &n) != EOF)
#endif
        {
            if (m >= 0 && n >= 0)
                {
                    if (!(e = NAG_ALLOC(MIN(m, n)-1, double)) ||
                        !(sv = NAG_ALLOC(MIN(m, n), double)) ||
                        !(a = NAG_ALLOC(m*n, Complex)) ||
                        !(q = NAG_ALLOC(m*m, Complex)) ||
                        !(dummy = NAG_ALLOC(1, Complex)))
                        {
                            printf("Allocation failure\n");
        #endif
                exit_status = -1;
                goto END;
            } else
                {
                    printf("Invalid m or n.
");
                    exit_status = 1;
                    return exit_status;
                }
            for (i = 0; i < m; ++i)
            for (j = 0; j < n; ++j)
#ifelse
    if (scanf_s("%lf%lf", COMPLEX(&A(i, j))) != 2)
#else
    if (scanf("%lf%lf", COMPLEX(&A(i, j))) != 2)
#endif
            {
                printf("Data input error: program terminated.\n");
#endif
        else
            {
                printf("Data input error: program terminated.\n");
#endif
            exit_status = 1;
            goto END;
        }
    /* Find the SVD of A. */
    wantq = Nag_TRUE;
    wantp = Nag_TRUE;
    ncolb = 0;
    /* nag_complex_svd (f02xec), see above. */
    nag_complex_svd(m, n, a, tda, ncolb, dummy, (Integer) 1, wantq,
        q, tdq, sv, wantp, dummy, (Integer) 1, &iter,
        e, &failinfo, &fail);
    if (fail.code != NE_NOERROR)
        {
            printf("Error from nag_complex_svd (f02xec).\n", fail.message);
            exit_status = 1;
            goto END;
        }
```
printf("Singular value decomposition of A\n\nSingular values\n");
for (i = 0; i < m; ++i)
 printf("%9.4f\n", sv[i], (i%5 == 4 || i == m-1)?"\n":" ");
printf("\nLeft-hand singular vectors, by column\n");
for (i = 0; i < m; ++i)
 for (j = 0; j < m; ++j)
 printf("%7.4f %7.4f\n", COMPLEX(Q(i, j)),
 (j%3 == 2 || j == n-1)?"\n":" ");
printf("\nRight-hand singular vectors, by column\n");
for (i = 0; i < n; ++i)
 for (j = 0; j < m; ++j)
 printf("%7.4f %7.4f\n", COMPLEX_CONJ(A(j, i)),
 (j%3 == 2 || j == n-1)?"\n":" ");
}
END:
NAG_FREE(e);
NAG_FREE(sv);
NAG_FREE(a);
NAG_FREE(q);
NAG_FREE(dummy);
return exit_status;
}

10.2 Program Data

\texttt{nag_complex_svd (f02xec) Example Program Data}

\textbf{Example 1}

\begin{verbatim}
 5 3
 0.00 0.50 -0.50 1.50 -1.00 1.00
 0.40 0.30 0.90 1.30 0.20 1.40
 0.40 0.00 -0.40 0.40 1.80 0.00
 0.30 -0.40 0.10 0.70 0.00 0.00
 0.00 -0.30 0.30 0.30 0.00 2.40
-0.55 1.05 0.49 0.93 0.56 -0.16
 0.39 0.23 1.13 0.83
\end{verbatim}

\textbf{Example 2}

\begin{verbatim}
 3 5
 0.00 -0.50 0.40 -0.30 0.40 0.00 0.30 0.40 0.00 0.30
-0.50 -1.50 0.90 -1.30 -0.40 -0.40 0.10 -0.70 0.30 -0.30
-1.00 -1.00 0.20 -1.40 1.80 0.00 0.00 0.00 0.00 -2.40
\end{verbatim}

10.3 Program Results

\texttt{nag_complex_svd (f02xec) Example Program Results}

\textbf{Example 1}

\textbf{Singular value decomposition of A}

\textbf{Singular values}

\begin{verbatim}
 3.9263 2.0000 0.7641
\end{verbatim}

\textbf{Left-hand singular vectors, by column}

\begin{verbatim}
-0.0757 -0.5079 -0.2831 -0.2831 -0.2251 0.1594
-0.4517 -0.2441 -0.3963 0.0566 -0.0075 0.2757
-0.2366 0.2669 -0.1359 -0.6341 0.2983 -0.2082
-0.0561 -0.0513 -0.3284 -0.0340 0.1670 -0.5978
-0.4820 -0.3279 0.3737 0.1019 -0.0976 -0.5612
\end{verbatim}

\textbf{Right-hand singular vectors, by column}

\begin{verbatim}
-0.1275 -0.0000 -0.2265 -0.0000 0.9656 -0.0000
-0.3899 0.2046 -0.3397 0.7926 -0.1311 0.2129
-0.5289 0.7142 -0.0000 -0.4529 -0.0698 -0.0119
\end{verbatim}
Vector $\text{conjg}(Q')B$
\[-1.9656 \ -0.7935 \ 0.1132 \ -0.3397 \ 0.0915 \ 0.6086$
\[-0.0600 \ -0.0200 \ 0.0400 \ 0.1200 \]

Example 2

Singular value decomposition of A

Singular values

\[
\begin{array}{ccc}
3.9263 & 2.0000 & 0.7641 \\
\end{array}
\]

Left-hand singular vectors, by column

\[
\begin{array}{cccccc}
-0.1275 & -0.0000 & 0.2265 & -0.0000 & -0.9656 & 0.0000 \\
-0.3899 & 0.2046 & 0.3397 & -0.7926 & 0.1311 & -0.2129 \\
-0.5289 & 0.7142 & 0.0000 & 0.4529 & 0.0698 & 0.0119 \\
\end{array}
\]

Right-hand singular vectors, by column

\[
\begin{array}{cccccc}
-0.0757 & -0.5079 & 0.2831 & 0.2831 & 0.2251 & -0.1594 \\
-0.4517 & -0.2441 & 0.3963 & -0.0566 & 0.0075 & -0.2757 \\
-0.2366 & 0.2669 & 0.1359 & 0.6341 & -0.2983 & 0.2082 \\
-0.0561 & -0.0513 & 0.3284 & 0.0340 & -0.1670 & 0.5978 \\
-0.4820 & -0.3277 & -0.3737 & -0.1019 & 0.0976 & 0.5664 \\
\end{array}
\]