NAG Library Function Document

nag_eigen_real_symm_sparse_arnoldi (f02fkc)

Note: this function uses optional arguments to define choices in the problem specification. If you wish to use default settings for all of the optional arguments, you need only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings this must be done by calling the option setting function nag_real_symm_sparse_eigensystem_option (f12fdc) from the user-supplied function option. Please refer to Section 11 for a detailed description of the specification of the optional arguments.

1 Purpose

nag_eigen_real_symm_sparse_arnoldi (f02fkc) computes selected eigenvalues and eigenvectors of a real sparse symmetric matrix.

2 Specification

```c
#include <nag.h>
#include <nagf02.h>
void nag_eigen_real_symm_sparse_arnoldi (Integer n, Integer nnz,
const double a[], const Integer irow[], const Integer icol[],
Integer nev, Integer ncv, double sigma,
void (*monit)(Integer ncv, Integer niter, Integer nconv,
const double w[], const double rzest[], Integer *istat,
Nag_Comm *comm),
void (*option)(Integer icom[], double com[], Integer *istat,
Nag_Comm *comm),
Integer *nconv, double w[], double v[], Integer pdv, double resid[],
Nag_Comm *comm, NagError *fail)
```

3 Description

nag_eigen_real_symm_sparse_arnoldi (f02fkc) computes selected eigenvalues and the corresponding right eigenvectors of a real sparse symmetric matrix \(A \):

\[Av_i = \lambda_i v_i. \]

A specified number, \(n_{ev} \), of eigenvalues \(\lambda_i \), or the shifted inverses \(\mu_i = 1/(\lambda_i - \sigma) \), may be selected either by largest or smallest modulus, largest or smallest value, or, largest and smallest values (both ends). Convergence is generally faster when selecting larger eigenvalues, smaller eigenvalues can always be selected by choosing a zero inverse shift (\(\sigma = 0.0 \)). When eigenvalues closest to a given value are required then the shifted inverses of largest magnitude should be selected with shift equal to the required value.

The sparse matrix \(A \) is stored in symmetric coordinate storage (SCS) format. See Section 2.1.2 in the f11 Chapter Introduction.

nag_eigen_real_symm_sparse_arnoldi (f02fkc) uses an implicitly restarted Arnoldi (Lanczos) iterative method to converge approximations to a set of required eigenvalues and corresponding eigenvectors. Further algorithmic information is given in Section 9 while a fuller discussion is provided in the f12 Chapter Introduction. If shifts are to be performed then operations using shifted inverse matrices are performed using a direct sparse solver.

4 References

5 Arguments

1: \(n \) – Integer \(\text{Input} \)

 On entry: \(n \), the order of the matrix \(A \).

 Constraint: \(n > 0 \).

2: \(nnz \) – Integer \(\text{Input} \)

 On entry: the dimension of the array \(a \). The number of nonzero elements in the lower triangular part of the matrix \(A \).

 Constraint: \(1 \leq nnz \leq n \times (n + 1)/2 \).

3: \(a[nnz] \) – const double \(\text{Input} \)

 On entry: the array of nonzero elements of the lower triangular part of the \(n \) by \(n \) symmetric matrix \(A \).

4: \(irow[nnz] \) – const Integer \(\text{Input} \)
5: \(icol[nnz] \) – const Integer \(\text{Input} \)

 On entry: the row and column indices of the elements supplied in array \(a \).

 If \(irow[k - 1] = i \) and \(icol[k - 1] = j \) then \(A_{ij} \) is stored in \(a[k - 1] \). \(irow \) does not need to be ordered, an internal call to nag_sparse_sym_sort (f11zbc) forces the correct ordering.

 Constraint:

 \(irow \) and \(icol \) must satisfy these constraints: \(1 \leq irow[i] \leq n \) and \(1 \leq icol[i] \leq irow[i] \), for \(i = 0, 1, \ldots, nnz - 1 \).

6: \(nev \) – Integer \(\text{Input} \)

 On entry: the number of eigenvalues to be computed.

 Constraint: \(0 < nev < n - 1 \).

7: \(ncv \) – Integer \(\text{Input} \)

 On entry: the dimension of the array \(w \). The number of Arnoldi basis vectors to use during the computation.

 At present there is no *a priori* analysis to guide the selection of \(ncv \) relative to \(nev \). However, it is recommended that \(ncv \geq 2 \times nev + 1 \). If many problems of the same type are to be solved, you should experiment with increasing \(ncv \) while keeping \(nev \) fixed for a given test problem. This will usually decrease the required number of matrix-vector operations but it also increases the work and storage required to maintain the orthogonal basis vectors. The optimal ‘cross-over’ with respect to computation time is problem dependent and must be determined empirically.

 Constraint: \(nev < ncv \leq n \).

8: \(sigma \) – double \(\text{Input} \)

 On entry: if the Shifted Inverse mode has been selected then \(sigma \) contains the real shift used; otherwise \(sigma \) is not referenced. This mode can be selected by setting the appropriate options in the user-supplied function \(\text{option} \).
9: monit – function, supplied by the user

monit is used to monitor the progress of nag_eigen_real_symm_sparse_arnoldi (f02fkc). monit may be specified as NULLFN if no monitoring is actually required. monit is called after the solution of each eigenvalue sub-problem and also just prior to return from nag_eigen_real_symm_sparse_arnoldi (f02fkc).

The specification of monit is:

```c
void monit (Integer ncv, Integer niter, Integer nconv,
            const double w[], const double rzest[], Integer *istat,
            Nag_Comm *comm)
```

1:
ncv – Integer

Input

On entry: the dimension of the arrays w and rzest. The number of Arnoldi basis vectors used during the computation.

2:
niter – Integer

Input

On entry: the number of the current Arnoldi iteration.

3:
nconv – Integer

Input

On entry: the number of converged eigenvalues so far.

4:
w[ncv] – const double

Input

On entry: the first nconv elements of w contain the converged approximate eigenvalues.

5:
rzest[ncv] – const double

Input

On entry: the first nconv elements of rzest contain the Ritz estimates (error bounds) on the converged approximate eigenvalues.

6:
istat – Integer *

Input/Output

On entry: set to zero.

On exit: if set to a nonzero value nag_eigen_real_symm_sparse_arnoldi (f02fkc) returns immediately with fail.code = NE_USER_STOP.

7:
comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to monit.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_eigen_real_symm_sparse_arnoldi (f02fkc) you may allocate memory and initialize these pointers with various quantities for use by monit when called from nag_eigen_real_symm_sparse_arnoldi (f02fkc) (see Section 3.2.1.1 in the Essential Introduction).

10: option – function, supplied by the user

You can supply non-default options to the Arnoldi eigensolver by repeated calls to nag_real_symm_sparse_eigensystem_option (f12fdc) from within option. (Please note that it is only necessary to call nag_real_symm_sparse_eigensystem_option (f12fdc); no call to nag_real_symm_sparse_eigensystem_init (f12fac) is required from within option.) For example, you can set the mode to Shifted Inverse, you can increase the Iteration Limit beyond its default and you can print varying levels of detail on the iterative process using Print Level.
If only the default options (including that the eigenvalues of largest magnitude are sought) are to be used then option may be specified as NULLFN. See Section 10 for an example of using option to set some non-default options.

The specification of option is:

```c
void option (Integer icom[], double com[], Integer *istat, Nag_Comm *comm)
```

1: icom[140] – Integer Communication Array
 On entry: contains details of the default option set. This array must be passed as argument icomm in any call to nag_real_symm_sparse_eigensystem_option (f12fdc).
 On exit: contains data on the current options set which may be altered from the default set via calls to nag_real_symm_sparse_eigensystem_option (f12fdc).

2: com[60] – double Communication Array
 On entry: contains details of the default option set. This array must be passed as argument comm in any call to nag_real_symm_sparse_eigensystem_option (f12fdc).
 On exit: contains data on the current options set which may be altered from the default set via calls to nag_real_symm_sparse_eigensystem_option (f12fdc).

3: istat – Integer * Input/Output
 On entry: set to zero.
 On exit: if set to a nonzero value nag_eigen_real_symm_sparse_arnoldi (f02fkc) returns immediately with fail.code = NE_USER_STOP.

4: comm – Nag_Comm * Pointer to structure of type Nag_Comm; the following members are relevant to option.
 user – double *
 iuser – Integer *
 p – Pointer
 The type Pointer will be void *. Before calling nag_eigen_real_symm_sparse_arnoldi (f02fkc) you may allocate memory and initialize these pointers with various quantities for use by option when called from nag_eigen_real_symm_sparse_arnoldi (f02fkc) (see Section 3.2.1.1 in the Essential Introduction).

11: nconv – Integer * Output
 On exit: the number of converged approximations to the selected eigenvalues. On successful exit, this will normally be nev.

12: w[nev] – double Output
 On exit: the first nconv elements contain the converged approximations to the selected eigenvalues.

13: v[dim] – double Output
 Note: the dimension, dim, of the array v must be at least pdv × nconv.
 On exit: contains the eigenvectors associated with the eigenvalue λi, for i = 1, 2, ..., nconv (stored in w). For eigenvalue, λj, the corresponding eigenvector is stored in v[(j − 1) × pdv + i − 1], for i = 1, 2, ..., n.
14: pdv – Integer

 Input

 On entry: the stride separating, in the array v, the elements of a real eigenvector from the corresponding elements of the next eigenvector.

 Constraint: pdv ≥ n.

15: resid[nev] – double

 Output

 On exit: the residual \(\|Aw_i - \lambda_i w_i\|_2 \) for the estimates to the eigenpair \(\lambda_i \) and \(w_i \) is returned in resid\([i - 1], \) for \(i = 1, 2, \ldots, \text{nconv} \).

16: comm – Nag_Comm *

 The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

17: fail – NagError *

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_BOTH_ENDS_1

The option Both Ends has been set but only 1 eigenvalue is requested.

NE_INT

On entry, \(n = \langle value \rangle \).
Constraint: \(n > 0 \).

On entry, \(nev = \langle value \rangle \).
Constraint: \(nev > 0 \).

On entry, \(nnz = \langle value \rangle \).
Constraint: \(nnz > 0 \).

NE_INT_2

On entry, \(ncv = \langle value \rangle \) and \(n = \langle value \rangle \).
Constraint: \(ncv \leq n \).

On entry, \(ncv = \langle value \rangle \) and \(nev = \langle value \rangle \).
Constraint: \(ncv > nev \).

On entry, \(nev = \langle value \rangle \) and \(n = \langle value \rangle \).
Constraint: \(nev < (n - 1) \).

On entry, \(nnz = \langle value \rangle \) and \(n = \langle value \rangle \).
Constraint: \(nnz \leq n \times (n + 1)/2 \).

On entry, \(pdv = \langle value \rangle \) and \(n = \langle value \rangle \).
Constraint: \(pdv \geq n \).
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
A serious error, code ⟨value⟩, has occurred in an internal call to ⟨value⟩. Check all function calls
and array sizes. If the call is correct then please contact NAG for assistance.

NE_INVALID_OPTION
The maximum number of iterations, through the optional argument Iteration Limit, has been set
to a non-positive value.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR
On entry, the matrix \((A - \sigma I) \) is numerically singular and could not be inverted. Try perturbing
the value of \(\sigma \).

NE_SPARSE_COL
On entry, for \(i = \langle value \rangle \), \(icol[i - 1] = \langle value \rangle \), \(irow[i - 1] = \langle value \rangle \).
Constraint: \(1 \leq icol[i - 1] \leq irow[i - 1] \).

NE_SPARSE_ROW
On entry, for \(i = \langle value \rangle \), \(irow[i - 1] = \langle value \rangle \).
Constraint: \(1 \leq irow[i - 1] \leq n \).

NE_TOO_MANY_ITER
The maximum number of iterations has been reached.
The maximum number of iterations = ⟨value⟩.
The number of converged eigenvalues = ⟨value⟩.
See the function document for further details.

NE_USER_STOP
User requested termination in monit, istat = ⟨value⟩.
User requested termination in option, istat = ⟨value⟩.

7 Accuracy
The relative accuracy of a Ritz value (eigenvalue approximation), \(\lambda \), is considered acceptable if its Ritz estimate \(\leq \text{Tolerance} \times \lambda \). The default value for Tolerance is the machine precision given by nag_machine_precision (X02AJC). The Ritz estimates are available via the monit function at each iteration in the Arnoldi process, or can be printed by setting option Print Level to a positive value.

8 Parallelism and Performance
nag_eigen_real_symm_sparse_arnoldi (f02fkc) is threaded by NAG for parallel execution in multi-threaded implementations of the NAG Library.
nag_eigen_real_symm_sparse_arnoldi (f02fkc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

nag_eigen_real_symm_sparse_arnoldi (f02fkc) calls functions based on the ARPACK suite in Chapter f12. These functions use an implicitly restarted Lanczos iterative method to converge to approximations to a set of required eigenvalues (see the f12 Chapter Introduction).

In the default Regular mode, only matrix-vector multiplications are performed using the sparse matrix A during the Lanczos process; nag_sparse_sym_matvec (f11xec) can be used to perform this task. Each iteration is therefore cheap computationally, relative to the alternative, Shifted Inverse, mode described below. It is most efficient (i.e., the total number of iterations required is small) when the eigenvalues of largest magnitude are sought and these are distinct.

Although there is an option for returning the smallest eigenvalues using this mode (see Smallest Magnitude option), the number of iterations required for convergence will be far greater or the method may not converge at all. However, where convergence is achieved, Regular mode may still prove to be the most efficient since no inversions are required. Where smallest eigenvalues are sought and Regular mode is not suitable, or eigenvalues close to a given real value are sought, the Shifted Inverse mode should be used.

If the Shifted Inverse mode is used (via a call to nag_real_symm_sparse_eigensystem_option (f12fdc) in option) then the matrix $A - \sigma I$ is used in linear system solves by the Lanczos process. This is first factorized internally using a direct sparse LDL^T factorization under the assumption that the matrix is indefinite. If the factorization determines that the matrix is numerically singular then the function exits with an error. In this situation it is normally sufficient to perturb σ by a small amount and call nag_eigen_real_symm_sparse_arnoldi (f02fkc) again. After successful factorization, subsequent solves are performed by backs substitution using the sparse factorization.

Finally, nag_eigen_real_symm_sparse_arnoldi (f02fkc) transforms the eigenvectors. Each eigenvector w is normalized so that $\|w\|_2 = 1$.

The monitoring function monit provides some basic information on the convergence of the Lanczos iterations. Much greater levels of detail on the Lanczos process are available via option Print Level. If this is set to a positive value then information will be printed, by default, to standard output. The destination of monitoring information can be changed using the Monitoring option.

10 Example

This example solves $Ax = \lambda x$ in Shifted Inverse mode, where A is obtained from the standard central difference discretization of the one-dimensional Laplacian operator $\frac{d^2u}{dx^2}$ on $[0, 1]$, with zero Dirichlet boundary conditions.

10.1 Program Text

/* nag_eigen_real_symm_sparse_arnoldi (f02fkc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 25, 2014. */

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf02.h>
#include <nagf12.h>
#include <nagx02.h>
#include <nagx04.h>
/* User-defined Functions */
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL myoption(Integer icomm[], double com[], Integer *istat,
 Nag_Comm *comm);

static void NAG_CALL mymonit(Integer ncv, Integer niter, Integer nconv,
 const double w[], const double rzest[],
 Integer *istat, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{

/* Scalars */
 double h2, sigma;
 Integer exit_status = 0;
 Integer fileid, fmode, i, imon, j, lo, maxit, mode;
 Integer n, nconv, ncv, nev, nnz, nx, prtlvl, tdv;

/* Local Arrays */
 double *w = 0, *a = 0, *resid = 0, *v = 0;
 double user[1];
 Integer *icol = 0, *irow = 0;
 Integer iuser[5];
 const char *filename = "f02fkce.monit";

/* Nag Types */
 Nag_Comm comm;
 NagError fail;
 INIT_FAIL(fail);
 comm.user = user;
 comm.iuser = iuser;
 user[0] = 0.0;
 iuser[0] = 0;

/* Output preamble */
 printf(" nag_eigen_real_symm_sparse_arnoldi (f02fkc) ");
 printf("Example Program Results\n\n");
 fflush(stdout);

/* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[\n"]");
#else
 scanf("%*[\n"]");
#endif
#endif

/* Read in problem size and parameters */
#ifdef _WIN32
 scanf_s("%NAG_IFMT%*[\n]%NAG_IFMT%*[\n]%NAG_IFMT", &nx, &nev, &ncv);
#else
 scanf("%NAG_IFMT%*[\n]%NAG_IFMT%*[\n]%NAG_IFMT", &nx, &nev, &ncv);
#endif
#endif
#ifdef _WIN32
 scanf_s("%*[\n]%lf%*[\n]", &sigma);
#else
 scanf("%*[\n]%lf%*[\n]", &sigma);
#endif

n = nx * nx;
nnz = 3 * n - 2*nx;
tdv = n;
if (!resid = NAG_ALLOC((ncv), double)) ||
 !(a = NAG_ALLOC((nnz), double)) ||
 !(w = NAG_ALLOC((ncv), double)) ||
 !(v = NAG_ALLOC((ncv), double)) ||
! (icol = NAG_ALLOC((nnz), Integer)) ||
! (irow = NAG_ALLOC((nnz), Integer)) ||
! (w = NAG_ALLOC((ncv), double)) ||
! (v = NAG_ALLOC((tdv)*(ncv), double)) }

printf("Allocation failure\n");
exit_status = -1;
goto END;

/* Construct A in sparse (SCS) format where:
 * A_{i,i} = 4/(h*h)
 * A_{i+1,i) = -1/(h*h)
 * A_{i+nx,i} = -1/(h*h)
 */

h2 = 1.0/(double)((nx+1)*(nx+1));

/* Main Diagonal of A */
k = 0;
for (i = 1; i <= n; i++) {
 irow[k] = i;
icol[k] = i;
a[k] = 4.0/h2;
k++;
}

/* First subdiagonal of A. */
for (i = 1; i <= nx; i++) {
 lo = (i-1)*nx;
 for (j = lo + 1; j <= lo + nx - 1; j++) {
 irow[k] = j + 1;
icol[k] = j;
a[k] = -1.0/h2;
k++;
 }
}

/* nx-th subdiagonal of A. */
for (i = 1; i < nx; i++) {
 lo = (i-1)*nx;
 for (j = lo + 1; j <= lo + nx; j++) {
 irow[k] = j + nx;
icol[k] = j;
a[k] = -1.0/h2;
k++;
 }
}

/* Set some options via iuser array and routine argument OPTION. */
* iuser[0] = print level, iuser[1] = iteration limit,
 * iuser[2]>0 means shifted-invert mode
*/
#define _WIN32
#endif

scanf_s("%NAG_IFMT%[^\n]%NAG_IFMT%[^\n]", &prtlvl, &maxit);
#else
scanf("%NAG_IFMT%[^\n]%NAG_IFMT%[^\n]", &prtlvl, &maxit);
#endif

#define _WIN32
#endif

scanf_s("%NAG_IFMT%[^\n]%NAG_IFMT%[^\n]", &mode, &imon);
#else
scanf("%NAG_IFMT%[^\n]%NAG_IFMT%[^\n]", &mode, &imon);
#endif

if (imon>0) {
 /* Open the monitoring file for writing using
 * nag_open_file (x04acc).
 * If prtlvl >=10 internal monitoring information is also written.
 */
 fmode = 1;
nag_open_file(filename, fmode, &fileid, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_open_file (x04acc) %s\n", fail.message);
 exit_status = 1;
 goto END;
} iuser[4] = fileid;
} iuser[0] = prtlvl;
iuser[1] = maxit;
iuser[2] = mode;
iuser[3] = imon;
/* Compute eigenvalues and eigenvectors using
 * nag_eigen_real_symm_sparse_arnoldi (f02fkc).
 * selected eigenvalues of real general matrix (driver).
 */
nag_eigen_real_symm_sparse_arnoldi(n, nnz, a, irow, icol, nev, ncv, sigma,
mymonit, myoption, &nconv, w, v, tdv,
resid, &comm, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_eigen_real_symm_sparse_arnoldi (f02fkc) %s\n",
fail.message);
 exit_status = 1;
 goto END;
} if (imon>0) {
 /* Close the monitoring file using
 * nag_close_file (x04adc).
 */
nag_close_file(fileid, &fail);
 if (fail.code != NE_NOERROR) {
 printf("Error from nag_close_file (x04adc) %s\n", fail.message);
 exit_status = 1;
 goto END;
 }
}
printf(" The %4"NAG_IFMT" ", nconv);
printf(" Ritz values of closest to %13.5e are \n", sigma);
for (i = 0; i < nconv; i++) {
 /* nag_machine_precision (x02ajc) */
 if (resid[i] > (double) (100 * n) * nag_machine_precision) {
 printf("%7"NAG_IFMT" %13.5e %13.5e\n", i+1, w[i], resid[i]);
 } else {
 printf("%8"NAG_IFMT" %13.5e\n", i+1, w[i]);
 }
}
END:
NAG_FREE(w);
NAG_FREE(a);
NAG_FREE(v);
NAG_FREE(resid);
NAG_FREE(icol);
NAG_FREE(irow);
return exit_status;
} static void NAG_CALL myoption(Integer icomm[], double com[], Integer *istat,
Nag_Comm *comm)
{
 NagError fail1;
 char rec[26];
 INIT_FAIL(fail1);
 /* Set options using
if (comm->iuser[0] > 0) {
 #ifdef _WIN32
 sprintf_s(rec, _countof(rec), "Print Level=%5"NAG_IFMT, comm->iuser[0]);
 #else
 sprintf(rec, "Print Level=%5"NAG_IFMT, comm->iuser[0]);
 #endif
 fail1.code = 1;
 nag_real_symm_sparse_eigensystem_option(rec, icomm, com, &fail1);
 *istat = MAX(*istat, fail1.code);
}

if (comm->iuser[1] > 100) {
 #ifdef _WIN32
 sprintf_s(rec, _countof(rec), "Iteration Limit=%5"NAG_IFMT, comm->iuser[1]);
 #else
 sprintf(rec, "Iteration Limit=%5"NAG_IFMT, comm->iuser[1]);
 #endif
 fail1.code = 1;
 nag_real_symm_sparse_eigensystem_option(rec, icomm, com, &fail1);
 *istat = MAX(*istat, fail1.code);
}

if (comm->iuser[2] > 0) {
 fail1.code = 1;
 nag_real_symm_sparse_eigensystem_option("Shifted Inverse", icomm, com, &fail1);
 *istat = MAX(*istat, fail1.code);
}

if (comm->iuser[3] > 0) {
 fail1.code = 1;
 #ifdef _WIN32
 sprintf_s(rec, _countof(rec), "Monitoring=%5"NAG_IFMT, comm->iuser[4]);
 #else
 sprintf(rec, "Monitoring=%5"NAG_IFMT, comm->iuser[4]);
 #endif
 nag_real_symm_sparse_eigensystem_option(rec, icomm, com, &fail1);
 *istat = MAX(*istat, fail1.code);
}

static void NAG_CALL mymonit(Integer ncv, Integer niter, Integer nconv,
const double w[], const double rzest[],
Integer *istat, Nag_Comm *comm)
{
 Integer i;
 char line[100];

 if (comm->iuser[3] > 0) {
 /* Write lines to the file we opened for monitoring using
 * nag_write_line (x04bac).
 */
 if (niter == 1 && comm->iuser[2] > 0) {
 #ifdef _WIN32
 sprintf_s(line, _countof(line), " Arnoldi basis vectors used: %4"NAG_IFMT"
"\n", ncv);
 nag_write_line(comm->iuser[4], line);
 sprintf_s(line, _countof(line), " The following Ritz values (mu) are "
"related to the\n");
 nag_write_line(comm->iuser[4], line);
 sprintf_s(line, _countof(line), " true eigenvalues (lambda) by lambda = "
"sigma + 1/mu\n");
 #else
 sprintf(line, " Arnoldi basis vectors used: %4"NAG_IFMT"\n", ncv);
 nag_write_line(comm->iuser[4], line);
 sprintf(line, " The following Ritz values (mu) are related to the\n");
 nag_write_line(comm->iuser[4], line);
 #endif
 }
 }
sprintf(line, " true eigenvalues (lambda) by lambda = sigma + 1/mu\n");
#endif
nag_write_line(comm->iuser[4], line);
}

#ifdef _WIN32
sprintf_s(line, _countof(line), "\n Iteration number %4"NAG_IFMT"\n", niter);
nag_write_line(comm->iuser[4], line);
sprintf_s(line, _countof(line), " Ritz values converged so far "
"(%4"NAG_IFMT") and their Ritz estimates:\n", nconv);
#else
sprintf(line, "\n Iteration number %4"NAG_IFMT"\n", niter);
nag_write_line(comm->iuser[4], line);
sprintf(line, " Ritz values converged so far (%4"NAG_IFMT") and their Ritz "
"estimates:\n", nconv);
#endif
nag_write_line(comm->iuser[4], line);
for (i = 0; i < nconv; i++) {
#ifdef _WIN32
sprintf_s(line, _countof(line), " %4"NAG_IFMT" %13.5e %13.5e\n", i+1, w[i], rzest[i]);
#else
sprintf(line, " %4"NAG_IFMT" %13.5e %13.5e\n", i+1, w[i], rzest[i]);
#endif
nag_write_line(comm->iuser[4], line);
}
#ifdef _WIN32
sprintf_s(line, _countof(line), " Next (unconverged) Ritz value:\n");
nag_write_line(comm->iuser[4], line);
sprintf_s(line, _countof(line), " %4"NAG_IFMT" %13.5e\n", nconv + 1, w[nconv]);
#else
sprintf(line, " Next (unconverged) Ritz value:\n");
nag_write_line(comm->iuser[4], line);
sprintf(line, " %4"NAG_IFMT" %13.5e\n", nconv + 1, w[nconv]);
#endif
nag_write_line(comm->iuser[4], line);
}*istat = 0;
}

10.2 Program Data

nag_eigen_real_symm_sparse_arnoldi (f02fkc) Example Program Data
20 : nx, matrix order n = nx*nx
8 : nev, number of eigenvalues requested
20 : ncv, size of subspace
1.0 : sigma, shift (want eigenvalues close to sigma)
0 : print level
500 : maximum number of iterations
1 : mode (0 = regular, 1 = shifted inverse)
0 : imon (0 = no monitoring, 1 = monitoring on)

10.3 Program Results

nag_eigen_real_symm_sparse_arnoldi (f02fkc) Example Program Results

The 8 Ritz values of closest to 1.00000e+00 are
1 1.97024e+01
2 4.90360e+01
3 4.90360e+01
4 7.83696e+01
5 9.71967e+01
6 9.71967e+01
7 1.26530e+02
8 1.26530e+02
11 Optional Arguments

Internally nag_eigen_real_symm_sparse_arnoldi (f02fkc) calls functions from the suite nag_real_symm_sparse_eigensystem_init (f12fac), nag_real_symm_sparse_eigensystem_iter (f12fbc), nag_real_symm_sparse_eigensystem_sol (f12fcc), nag_real_symm_sparse_eigensystem_option (f12fdc) and nag_real_symm_sparse_eigensystem_monit (f12fec). Several optional arguments for these computational functions define choices in the problem specification or the algorithm logic. In order to reduce the number of formal arguments of nag_eigen_real_symm_sparse_arnoldi (f02fkc) these optional arguments are also used here and have associated default values that are usually appropriate. Therefore, you need only specify those optional arguments whose values are to be different from their default values.

Optional arguments may be specified via the user-supplied function option in the call to nag_eigen_real_symm_sparse_arnoldi (f02fkc). option must be coded such that one call to nag_real_symm_sparse_eigensystem_option (f12fdc) is necessary to set each optional argument. All optional arguments you do not specify are set to their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional arguments.

The following is a list of the optional arguments available. A full description of each optional argument is provided in Section 11.1.

Advisory
Both Ends
Defaults
Iteration Limit
Largest Algebraic
Largest Magnitude
List
Monitoring
Nolist
Print Level
Regular
Regular Inverse
Shifted Inverse
Smallest Algebraic
Smallest Magnitude
Tolerance

11.1 Description of the Optional Arguments

For each option, we give a summary line, a description of the optional argument and details of constraints.

The summary line contains:

- the keywords, where the minimum abbreviation of each keyword is underlined;
- a parameter value, where the letters a, i and r denote options that take character, integer and real values respectively;
- the default value, where the symbol ε is a generic notation for machine precision (see nag_machine_precision (X02AJC)).

Keywords and character values are case and white space insensitive.

Optional arguments used to specify files (e.g., Advisory and Monitoring) have type Integer. This Integer value corresponds with the Nag_FileID as returned by nag_open_file (x04acc). See Section 10 for an example of the use of this facility.
Advisory

Default = 0

(See Section 3.2.1.1 in the Essential Introduction for further information on NAG data types.)

If the optional argument `List` is set then optional argument specifications are listed in a `List file` by setting the option to a file identification (unit) number associated with `Advisory` messages (see `nag_open_file (x04acc)`).

Defaults

This special keyword may be used to reset all optional arguments to their default values.

Iteration Limit

Default = 300

The limit on the number of Lanczos iterations that can be performed before `nag_real_symm_sparse_eigensystem_iter (f12fbc)` exits. If not all requested eigenvalues have converged to within `Tolerance` and the number of Lanczos iterations has reached this limit then `nag_real_symm_sparse_eigensystem_iter (f12fbc)` exits with an error; `nag_real_symm_sparse_eigensystem_sol (f12fcc)` can still be called subsequently to return the number of converged eigenvalues, the converged eigenvalues and, if requested, the corresponding eigenvectors.

Largest Magnitude

Both Ends

Smallest Magnitude

Smallest Algebraic

Largest Algebraic

The Lanczos iterative method converges on a number of eigenvalues with given properties. The default is for `nag_real_symm_sparse_eigensystem_iter (f12fbc)` to compute the eigenvalues of largest magnitude using **Largest Magnitude**. Alternatively, eigenvalues may be chosen which have **Largest Algebraic** part, **Smallest Magnitude**, or **Smallest Algebraic** part; or eigenvalues which are from **Both Ends** of the algebraic spectrum.

Nolist

Default

Normally each optional argument specification is not listed as it is supplied. This behaviour can be changed using the `List` and `Nolist` options.

Monitoring

Default = –1

(See Section 3.2.1.1 in the Essential Introduction for further information on NAG data types.)

Unless `Monitoring` is set to –1 (the default), monitoring information is output to Nag_FileID `Monitoring` during the solution of each problem; this may be the same as `Advisory`. The type of information produced is dependent on the value of `Print Level`, see the description of the optional argument `Print Level` in this section for details of the information produced. Please see `nag_open_file (x04acc)` to associate a file with a given Nag_FileID.

Print Level

Default = 0

This controls the amount of printing produced by `nag_eigen_real_symm_sparse_arnoldi (f02fkc)` as follows.

= 0 No output except error messages. If you want to suppress all output, set `Print Level` = 0.

> 0 The set of selected options.

= 2 Problem and timing statistics on final exit from `nag_real_symm_sparse_eigensystem_iter (f12fbc)`.

≥ 5 A single line of summary output at each Lanczos iteration.
If Monitoring is set, then at each iteration, the length and additional steps of the current Lanczos factorization and the number of converged Ritz values; during re-orthogonalization, the norm of initial/restarted starting vector; on a final Lanczos iteration, the number of update iterations taken, the number of converged eigenvalues, the converged eigenvalues and their Ritz estimates.

Problem and timing statistics on final exit from nag_real_symm_sparse_eigensystem_iter (f12fbc). If Monitoring is set, then at each iteration, the number of shifts being applied, the eigenvalues and estimates of the symmetric tridiagonal matrix \(H \), the size of the Lanczos basis, the wanted Ritz values and associated Ritz estimates and the shifts applied; vector norms prior to and following re-orthogonalization.

If Monitoring is set, then on final iteration, the norm of the residual; when computing the Schur form, the eigenvalues and Ritz estimates both before and after sorting; for each iteration, the norm of residual for compressed factorization and the symmetric tridiagonal matrix \(H \); during re-orthogonalization, the initial/restarted starting vector; during the Lanczos iteration loop, a restart is flagged and the number of the residual requiring iterative refinement; while applying shifts, some indices.

If Monitoring is set, then during the Lanczos iteration loop, the Lanczos vector number and norm of the current residual; while applying shifts, key measures of progress and the order of \(H \); while computing eigenvalues of \(H \), the diagonals of \(H \), the computed eigenvalues and Ritz estimates.

If Monitoring is set, then during Lanczos iteration loop: norms of key components and the active column of \(H \), norms of residuals during iterative refinement, the final symmetric tridiagonal matrix \(H \); while applying shifts: number of shifts, shift values, block indices, updated tridiagonal matrix \(H \); while computing eigenvalues of \(H \): the diagonals of \(H \), the computed eigenvalues and Ritz estimates.

Note that setting Print Level \(\geq 30 \) can result in very lengthy Monitoring output.

Regular

Regular Inverse

Shifted Inverse

These options define the computational mode which in turn defines the form of operation \(OP(x) \) to be performed.

Regular \(OP = A \n\)

Shifted Inverse \(OP = (A - \sigma I)^{-1} \) where \(\sigma \) is real

Regular Inverse \(OP = A^{-1} \n\)

Tolerance \(r \) \n
Default \(= \epsilon \)

An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is within Tolerance relative to the magnitude of the eigenvalue.