NAG Library Function Document

nag_hermitian_eigensystem (f02axc)

1 Purpose

nag_hermitian_eigensystem (f02axc) calculates all the eigenvalues and eigenvectors of a complex Hermitian matrix.

2 Specification

```c
#include <nag.h>
#include <nagf02.h>

void nag_hermitian_eigensystem (Integer n, const Complex a[], Integer tda, double r[], Complex v[], Integer tdv, NagError *fail)
```

3 Description

The complex Hermitian matrix A is first reduced to a real tridiagonal matrix by $n - 2$ unitary transformations and a subsequent diagonal transformation. The eigenvalues and eigenvectors are then derived using the QL algorithm, an adaptation of the QR algorithm.

4 References

5 Arguments

1: n – Integer

 On entry: n, the order of the matrix A.

 Constraint: $n \geq 1$.

2: $a[n \times tda]$ – const Complex

 On entry: the elements of the lower triangle of the n by n complex Hermitian matrix A. Elements of the array above the diagonal need not be set. See also Section 9.

3: tda – Integer

 On entry: the stride separating matrix column elements in the array a.

 Constraint: $tda \geq n$.

4: $r[n]$ – double

 On exit: the eigenvalues in ascending order.

5: $v[n \times tdv]$ – Complex

 Note: the (i,j)th element of the matrix V is stored in $v[(i - 1) \times tdv + j - 1]$.

 On exit: the eigenvectors, stored by columns. The ith column corresponds to the ith eigenvector. The eigenvectors are normalized so that the sum of the squares of the moduli of the elements is equal to 1 and the element of largest modulus is real. See also Section 9.
6: **tdv** – Integer

On entry: the stride separating matrix column elements in the array \(v \).

Constraint: \(tdv \geq n \).

7: **fail** – NagError

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, \(tda = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(tda \geq n \).

On entry, \(tdv = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(tdv \geq n \).

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_DIAG_IMAG_NON_ZERO

Matrix diagonal element \(a[(\langle \text{value} \rangle) \times tda + \langle \text{value} \rangle] \) has nonzero imaginary part.

NE_INT_ARG_LT

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 1 \).

NE_TOO_MANY_ITERATIONS

More than \(\langle \text{value} \rangle \) iterations are required to isolate all the eigenvalues.

7 **Accuracy**

The eigenvectors are always accurately orthogonal but the accuracy of the individual eigenvalues and eigenvectors is dependent on their inherent sensitivity to small changes in the original matrix. For a detailed error analysis see page 235 of Wilkinson and Reinsch (1971).

8 **Parallelism and Performance**

Not applicable.

9 **Further Comments**

The time taken by nag_hermitian_eigensystem (f02axc) is approximately proportional to \(n^3 \).

The function may be called with the same actual array supplied for \(a \) and \(v \), in which case the eigenvectors will overwrite the original matrix \(A \).

10 **Example**

To calculate the eigenvalues and eigenvectors of the complex Hermitian matrix:

\[
\begin{pmatrix}
0.50 & 0.00 & 1.84 + 1.38i & 2.08 - 1.56i \\
0.00 & 0.50 & 1.12 + 0.84i & -0.56 + 0.42i \\
1.84 - 1.38i & 1.12 - 0.84i & 0.50 & 0.00 \\
2.08 + 1.56i & -0.56 - 0.42i & 0.00 & 0.50
\end{pmatrix}
\]
10.1 Program Text

/* nag_hermitian_eigensystem (f02axc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 2, 1991. */
/* Mark 8 revised, 2004. */
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf02.h>
#define A(I, J) a[(I) *tda + J]
#define V(I, J) v[(I) *tdv + J]
int main(void)
{
 Complex *a = 0, *v = 0;
 Integer exit_status = 0, i, j, n, tda, tdv;
 NagError fail;
 double *r = 0;
 INIT_FAIL(fail);
 printf("
 nag_hermitian_eigensystem (f02axc) Example Program Results\n");
 if (n >= 1)
 {
 if (!(r = NAG_ALLOC(n, double)) ||
 !(a = NAG_ALLOC((n)*(n), Complex)) ||
 !(v = NAG_ALLOC((n)*(n), Complex)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 tda = n;
 tdv = n;
 }
 else
 {
 printf("Invalid n.\n");
 exit_status = 1;
 return exit_status;
 }
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 scanf("
 (%lf, %lf) ", &A(i, j).re, &A(i, j).im);
 /* nag_hermitian_eigensystem (f02axc). */
 /* All eigenvalues and eigenvectors of complex Hermitian */
 /* matrix */
 nag_hermitian_eigensystem(n, a, tda, r, v, tdv, &fail);
 if (fail.code != NE_NOERROR)
 {
printf("Error from nag_hermitian_eigensystem (f02axc).
fail.message);
exit_status = 1;
goto END;
}
printf("Eigenvalues\n");
for (i = 0; i < n; i++)
 printf("%9.4f", r[i]);
printf("nEigenvectors\n");
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 printf("(%7.3f %7.3f)%s", V(i, j).re, V(i, j).im,
 (j%4 == 3 || j == n-1) ? "\n":" ");
END:
NAG_FREE(r);
NAG_FREE(a);
NAG_FREE(v);
return exit_status;
}

10.2 Program Data

nag_hermitian_eigensystem (f02axc) Example Program Data
 4
 (0.50, 0.00) (0.00, 0.00) (1.84, 1.38) (2.08,-1.56)
 (0.00, 0.00) (0.50, 0.00) (1.12, 0.84) (-0.56, 0.42)
 (1.84,-1.38) (1.12,-0.84) (0.50, 0.00) (0.00, 0.00)
 (2.08, 1.56) (-0.56,-0.42) (0.00, 0.00) (0.50, 0.00)

10.3 Program Results

nag_hermitian_eigensystem (f02axc) Example Program Results
Eigenvalues
 -3.0000 -1.0000 2.0000 4.0000
Eigenvectors
 (0.700 0.000) (-0.100 -0.000) (-0.100 0.000) (0.700 0.000)
 (0.100 -0.000) (0.700 0.000) (0.700 0.000) (0.100 0.000)
 (-0.400 0.300) (-0.400 0.300) (0.400 -0.300) (0.400 -0.300)
 (-0.400 -0.300) (0.400 0.300) (-0.400 -0.300) (0.400 0.300)