NAG Library Function Document

nag_real_symm_general_eigensystem (f02aec)

1 Purpose

nag_real_symm_general_eigensystem (f02aec) calculates all the eigenvalues and eigenvectors of $Ax = \lambda Bx$, where A is a real symmetric matrix and B is a real symmetric positive definite matrix.

2 Specification

```c
#include <nag.h>
#include <nagf02.h>

void nag_real_symm_general_eigensystem (Integer n, double a[], Integer tda,
             double b[], Integer tdb, double r[], double v[], Integer tdv,
             NagError *fail)
```

3 Description

The problem is reduced to the standard symmetric eigenproblem using Cholesky’s method to decompose B into triangular matrices $B = LL^T$, where L is lower triangular. Then $Ax = \lambda Bx$ implies $(L^{-1}AL^{-T})(L^Tx) = \lambda (L^Tx)$; hence the eigenvalues of $Ax = \lambda Bx$ are those of $Py = \lambda y$, where P is the symmetric matrix $L^{-1}AL^{-T}$. Householder's method is used to tridiagonalise the matrix P and the eigenvalues are found using the QL algorithm. An eigenvector z of the derived problem is related to an eigenvector x of the original problem by $z = L^Tx$. The eigenvectors z are determined using the QL algorithm and are normalized so that $z^Tz = 1$; the eigenvectors of the original problem are then determined by solving $L^Tx = z$, and are normalized so that $x^TBx = 1$.

4 References

5 Arguments

1:
 n – Integer

 Input

 On entry: n, the order of the matrices A and B.

 Constraint: $n \geq 1$.

2:
 a[n × tda] – double

 Input/Output

 Note: the (i,j)th element of the matrix A is stored in $a[(i-1) \times tda + j-1]$.

 On entry: the upper triangle of the n by n symmetric matrix A. The elements of the array below the diagonal need not be set.

 On exit: the lower triangle of the array is overwritten. The rest of the array is unchanged. See also Section 9

3:
 tda – Integer

 Input

 On entry: the stride separating matrix column elements in the array a.

 Constraint: $tda \geq n$.
4: \(b[n \times tdb] \) – double

Input/Output

Note: the \((i, j)\)th element of the matrix \(B \) is stored in \(b[(i - 1) \times tdb + j - 1] \).

On entry: the upper triangle of the \(n \times n \) symmetric positive definite matrix \(B \). The elements of the array below the diagonal need not be set.

On exit: the elements below the diagonal are overwritten. The rest of the array is unchanged.

5: \(tdb \) – Integer

Input

On entry: the stride separating matrix column elements in the array \(b \).

Constraint: \(tdb \geq n \).

6: \(r[n] \) – double

Output

On exit: the eigenvalues in ascending order.

7: \(v[n \times tdv] \) – double

Output

Note: the \((i, j)\)th element of the matrix \(V \) is stored in \(v[(i - 1) \times tdv + j - 1] \).

On exit: the normalized eigenvectors, stored by columns; the \(i \)th column corresponds to the \(i \)th eigenvalue. The eigenvectors \(x \) are normalized so that \(x^T B x = 1 \). See also Section 9

8: \(tdv \) – Integer

Input

On entry: the stride separating matrix column elements in the array \(v \).

Constraint: \(tdv \geq n \).

9: \(fail \) – NagError*

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, \(tda = \langle\text{value}\rangle \) while \(n = \langle\text{value}\rangle \). These arguments must satisfy \(tda \geq n \).

On entry, \(tdb = \langle\text{value}\rangle \) while \(n = \langle\text{value}\rangle \). These arguments must satisfy \(tdb \geq n \).

On entry, \(tdv = \langle\text{value}\rangle \) while \(n = \langle\text{value}\rangle \). These arguments must satisfy \(tdv \geq n \).

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, \(n = \langle\text{value}\rangle \).

Constraint: \(n \geq 1 \).

NE_NOT_POS_DEF

The matrix \(B \) is not positive definite, possibly due to rounding errors.

NE_TOO_MANY_ITERATIONS

More than \(\langle\text{value}\rangle \) iterations are required to isolate all the eigenvalues.
7 Accuracy

In general this function is very accurate. However, if \(B \) is ill-conditioned with respect to inversion, the eigenvectors could be inaccurately determined. For a detailed error analysis see pages 310, 222 and 235 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_real_symm_general_eigensystem (f02aec) is approximately proportional to \(n^3 \). The function may be called with the same actual array supplied for arguments \(a \) and \(v \), in which case the eigenvectors will overwrite the original matrix \(A \).

10 Example

To calculate all the eigenvalues and eigenvectors of the general symmetric eigenproblem \(Ax = \lambda Bx \) where \(A \) is the symmetric matrix

\[
\begin{pmatrix}
0.5 & 1.5 & 6.6 & 4.8 \\
1.5 & 6.5 & 16.2 & 8.6 \\
6.6 & 16.2 & 37.6 & 9.8 \\
4.8 & 8.6 & 9.8 & -17.1
\end{pmatrix}
\]

and \(B \) is the symmetric positive definite matrix

\[
\begin{pmatrix}
1 & 3 & 4 & 1 \\
3 & 13 & 16 & 11 \\
4 & 16 & 24 & 18 \\
1 & 11 & 18 & 27
\end{pmatrix}
\]

10.1 Program Text

/* nag_real_symm_general_eigensystem (f02aec) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 2 revised, 1992. */
/* Mark 8 revised, 2004. */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf02.h>

#define A(I, J) a[(I) *tda + J]
#define B(I, J) b[(I) *tdb + J]
#define V(I, J) v[(I) *tdv + J]

int main(void)
{
 Integer exit_status = 0, i, j, n, tda, tdb, tdv;
 NagError fail;
 double *a = 0, *b = 0, *r = 0, *v = 0;
 INIT_FAIL(fail);
 printf("nag_real_symm_general_eigensystem (f02aec) Example Program"
 " Results\n") ;
 /* Skip heading in data file */
#ifdef _WIN32
scanf_s("%*[\n"]);
#else
scanf("%*[\n"]);
#endif
#endif
#ifdef _WIN32
scanf_s("%"NAG_IFMT"", &n);
#else
scanf("%"NAG_IFMT"", &n);
#endif
if (n >= 1)
{
 if (!(a = NAG_ALLOC(n*n, double)) ||
 !(b = NAG_ALLOC(n*n, double)) ||
 !(r = NAG_ALLOC(n, double)) ||
 !(v = NAG_ALLOC(n*n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 tda = n;
 tdb = n;
 tdv = n;
}
else
{
 printf("Invalid n.\n");
 exit_status = 1;
 return exit_status;
}
for (i = 0; i < n; i++)
{
 for (j = 0; j < n; j++)
#ifndef _WIN32
scanf("%lf", &A(i, j));
#else
scanf_s("%lf", &A(i, j));
#endif
#endif
 for (j = 0; j < n; j++)
#ifndef _WIN32
scanf("%lf", &B(i, j));
#else
scanf_s("%lf", &B(i, j));
#endif
#endif
/* nag_real_symm_general_eigensystem (f02aec).
 * All eigenvalues and eigenvectors of generalized real
 * symmetric-definite eigenproblem
 */
nag_real_symm_general_eigensystem(n, a, tda, b, tdb, r, v, tdv, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_real_symm_general_eigensystem (f02aec).\n");
 exit_status = 1;
 goto END;
}
printf("Eigenvalues
");
for (i = 0; i < n; i++)
 printf("%9.4f%s", r[i], (i%8 == 7 || i == n-1)?"\n":" ");
printf("Eigenvectors\n");
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 printf("%9.4f%s", V(i, j), (j%8 == 7 || j == n-1)?"\n":" ");
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(r);
NAG_FREE(v);
return exit_status;
}

10.2 Program Data

nag_real_symm_general_eigensystem (f02aec) Example Program Data

4
0.5 1.5 6.6 4.8 1.0 3.0 4.0 1.0
1.5 6.5 16.2 8.6 3.0 13.0 16.0 11.0
6.6 16.2 37.6 9.8 4.0 16.0 24.0 18.0
4.8 8.6 9.8 -17.1 1.0 11.0 18.0 27.0

10.3 Program Results

nag_real_symm_general_eigensystem (f02aec) Example Program Results

Eigenvalues
-3.0000 -1.0000 2.0000 4.0000

Eigenvectors
-4.3500 -2.0500 -3.9500 2.6500
 0.0500 0.1500 0.8500 0.0500
 1.0000 0.5000 0.5000 -1.0000
-0.5000 -0.5000 0.5000 0.5000