NAG Library Function Document
nag_real_symm_general_eigenvalues (f02adc)

1 Purpose
nag_real_symm_general_eigenvalues (f02adc) calculates all the eigenvalues of \(Ax = \lambda Bx \), where \(A \) is a real symmetric matrix and \(B \) is a real symmetric positive definite matrix.

2 Specification
```c
#include <nag.h>
#include <nagf02.h>
void nag_real_symm_general_eigenvalues (Integer n, double a[], Integer tda,
                                      double b[], Integer tdb, double r[], NagError *fail)
```

3 Description
The problem is reduced to the standard symmetric eigenproblem using Cholesky’s method to decompose \(B \) into triangular matrices, \(B = LL^T \), where \(L \) is lower triangular. Then \(Ax = \lambda Bx \) implies \((L^{-1}AL^{-T})(L^Tx) = \lambda(L^Tx)\); hence the eigenvalues of \(Ax = \lambda Bx \) are those of \(Py = \lambda y \) where \(P \) is the symmetric matrix \(L^{-1}AL^{-T} \). Householder’s method is used to tridiagonalise the matrix \(P \) and the eigenvalues are then found using the QL algorithm.

4 References

5 Arguments
1: \(n \) – Integer
 \(\text{Input} \)
 On entry: \(n \), the order of the matrices \(A \) and \(B \).
 Constraint: \(n \geq 1 \).

2: \(a[n \times tda] \) – double
 \(\text{Input/Output} \)
 Note: the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(i-1) \times tda + j - 1] \).
 On entry: the upper triangle of the \(n \) by \(n \) symmetric matrix \(A \). The elements of the array below the diagonal need not be set.
 On exit: the lower triangle of the array is overwritten. The rest of the array is unchanged.

3: \(tda \) – Integer
 \(\text{Input} \)
 On entry: the stride separating matrix column elements in the array \(a \).
 Constraint: \(tda \geq n \).

4: \(b[n \times tdb] \) – double
 \(\text{Input/Output} \)
 Note: the \((i,j)\)th element of the matrix \(B \) is stored in \(b[(i-1) \times tdb + j - 1] \).
 On entry: the upper triangle of the \(n \) by \(n \) symmetric positive definite matrix \(B \). The elements of the array below the diagonal need not be set.
On exit: the elements below the diagonal are overwritten. The rest of the array is unchanged.

5: tdb – Integer

On entry: the stride separating matrix column elements in the array b.

Constraint: $\text{tdb} \geq n$.

6: $r[n]$ – double

On exit: the eigenvalues in ascending order.

7: fail – NagError

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, $\text{tda} = \langle value \rangle$ while $n = \langle value \rangle$. These arguments must satisfy $\text{tda} \geq n$.

On entry, $\text{tdb} = \langle value \rangle$ while $n = \langle value \rangle$. These arguments must satisfy $\text{tdb} \geq n$.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, $n = \langle value \rangle$.

Constraint: $n \geq 1$.

NE_NOT_POS_DEF

The matrix B is not positive definite, possibly due to rounding errors.

NE_TOO_MANY_ITERATIONS

More than $\langle value \rangle$ iterations are required to isolate all the eigenvalues.

7 Accuracy

In general this function is very accurate. However, if B is ill-conditioned with respect to inversion, the eigenvalues could be inaccurately determined. For a detailed error analysis see pages 310, 222 and 235 Wilkinson and Reinsch (1971).

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_real_symm_general_eigenvalues ($f02adc$) is approximately proportional to n^3.

f02adc

NAG Library Manual
10 Example

To calculate all the eigenvalues of the general symmetric eigenproblem $Ax = \lambda Bx$ where A is the symmetric matrix

$$
\begin{pmatrix}
0.5 & 1.5 & 6.6 & 4.8 \\
1.5 & 6.5 & 16.2 & 8.6 \\
6.6 & 16.2 & 37.6 & 9.8 \\
4.8 & 8.6 & 9.8 & -17.1
\end{pmatrix}
$$

and B is the symmetric positive definite matrix

$$
\begin{pmatrix}
1 & 3 & 4 & 1 \\
3 & 13 & 16 & 11 \\
4 & 16 & 24 & 18 \\
1 & 11 & 18 & 27
\end{pmatrix}
$$

10.1 Program Text

/* nag_real_symm_general_eigenvalues (f02adc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 1, 1990. *
 * Mark 8 revised, 2004. */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf02.h>
#define A(I, J) a[(I) *tda + J]
#define B(I, J) b[(I) *tdb + J]
int main(void)
{
 Integer exit_status = 0, i, j, n, tda, tdb;
 NagError fail;
 double *a = 0, *b = 0, *r = 0;

 INIT_FAIL(fail);
 printf("nag_real_symm_general_eigenvalues (f02adc) Example Program"
 " Results\n");
 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n");
 #else
 scanf("%*[\n");
 #endif
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT", &n);
 #else
 scanf("%"NAG_IFMT", &n);
 #endif
 if (n >= 1)
 {
 if (!(a = NAG_ALLOC(n*n, double))
 || !(b = NAG_ALLOC(n*n, double))
 || !(r = NAG_ALLOC(n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 }
 else
 {
 ...
printf("Invalid n.\n");
exit_status = 1;
return exit_status;
}

tda = n;
tdb = n;

for (i = 0; i < n; i++)
{
 for (j = 0; j < n; j++)
 scanf("%lf", &A(i, j));
}

for (j = 0; j < n; j++)
 scanf("%lf", &B(i, j));

/* nag_real_symm_general_eigenvalues (f02adc).
* All eigenvalues of generalized real symmetric-definite
* eigenproblem */

nag_real_symm_general_eigenvalues(n, a, tda, b, tdb, r, &fail);

if (fail.code != NE_NOERROR)
{
 printf(
 "Error from nag_real_symm_general_eigenvalues (f02adc)\n",
 fail.message);
 exit_status = 1;
 goto END;
}

printf("Eigenvalues\n");
for (i = 0; i < n; i++)
 printf("%9.4f\n", r[i], (i%8 == 7 || i == n-1)?"\n":" ");

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(r);
return exit_status;

10.2 Program Data

nag_real_symm_general_eigenvalues (f02adc) Example Program Data

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>6.6</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
<td>6.5</td>
<td>16.2</td>
<td>3.0</td>
<td>13.0</td>
</tr>
<tr>
<td>6.6</td>
<td>16.2</td>
<td>37.6</td>
<td>9.8</td>
<td>4.0</td>
</tr>
<tr>
<td>4.8</td>
<td>8.6</td>
<td>18.0</td>
<td>17.1</td>
<td>18.0</td>
</tr>
</tbody>
</table>

10.3 Program Results

nag_real_symm_general_eigenvalues (f02adc) Example Program Results

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.0000</td>
<td>-1.0000</td>
<td>2.0000</td>
<td>4.0000</td>
<td></td>
</tr>
</tbody>
</table>