NAG Library Function Document

nag_matop_complex_gen_matrix_frcht_log (f01kkc)

1 Purpose

nag_matop_complex_gen_matrix_frcht_log (f01kkc) computes the Fréchet derivative \( L(A,E) \) of the matrix logarithm of the complex \( n \) by \( n \) matrix \( A \) applied to the complex \( n \) by \( n \) matrix \( E \). The principal matrix logarithm \( \log(A) \) is also returned.

2 Specification

```c
#include <nag.h>
#include <nagf01.h>
void nag_matop_complex_gen_matrix_frcht_log (Integer n, Complex a[],
                                          Integer pda, Complex e[],
                                          Integer pde, NagError *fail)
```

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix logarithm \( \log(A) \) is the unique logarithm whose spectrum lies in the strip \( \{ z : -\pi < \text{Im}(z) < \pi \} \).

The Fréchet derivative of the matrix logarithm of \( A \) is the unique linear mapping \( E \mapsto L(A,E) \) such that for any matrix \( E \)

\[
\log(A + E) - \log(A) - L(A,E) = o(\|E\|).
\]

The derivative describes the first order effect of perturbations in \( A \) on the logarithm \( \log(A) \).

nag_matop_complex_gen_matrix_frcht_log (f01kkc) uses the algorithm of Al–Mohy et al. (2012) to compute \( \log(A) \) and \( L(A,E) \). The principal matrix logarithm \( \log(A) \) is computed using a Schur decomposition, a Padé approximant and the inverse scaling and squaring method. The Padé approximant is then differentiated in order to obtain the Fréchet derivative \( L(A,E) \). If \( A \) is nonsingular but has negative real eigenvalues, the principal logarithm is not defined, but nag_matop_complex_gen_matrix_frcht_log (f01kkc) will return a non-principal logarithm and Fréchet derivative.

4 References


5 Arguments

1: \( n \) – Integer

\textit{Input}

\textit{On entry:} \( n \), the order of the matrix \( A \).

\textit{Constraint:} \( n \geq 0 \).

2: \( a[dim] \) – Complex

\textit{Input/Output}

\textit{Note:} the dimension, \( dim \), of the array \( a \) must be at least \( pda \times n \).

The \((i,j)\)th element of the matrix \( A \) is stored in \( a[(j - 1) \times pda + i - 1] \).
On entry: the \( n \) by \( n \) matrix \( A \).

On exit: the \( n \) by \( n \) principal matrix logarithm, \( \log(A) \). Alternatively, if \( \text{fail.code} = \text{NE_NEGATIVE_EIGVAL} \), a non-principal logarithm is returned.

3: \( \text{pda} \) – Integer \( ^{\text{Input}} \)

On entry: the stride separating matrix row elements in the array \( a \).

Constraint: \( \text{pda} \geq n \).

4: \( \text{e}[\dim] \) – Complex \( ^{\text{Input/Output}} \)

Note: the dimension, \( \dim \), of the array \( e \) must be at least \( \text{pde} \times n \).

The \( (i,j) \)th element of the matrix \( E \) is stored in \( e[(j - 1) \times \text{pde} + i - 1] \).

On entry: the \( n \) by \( n \) matrix \( E \)

On exit: with \( \text{fail.code} = \text{NE_NOERROR} \), \( \text{NE_NEGATIVE_EIGVAL} \) or \( \text{NW_SOME_PRECISION_LOSS} \), the Fréchet derivative \( L(A, \bar{E}) \)

5: \( \text{pde} \) – Integer \( ^{\text{Input}} \)

On entry: the stride separating matrix row elements in the array \( e \).

Constraint: \( \text{pde} \geq n \).

6: \( \text{fail} \) – \text{NagError} * \( ^{\text{Input/Output}} \)

The \text{NagError} argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\text{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

\text{NE_BAD_PARAM}

On entry, argument “\( \langle\text{value}\rangle \)” had an illegal value.

\text{NE_INT}

On entry, \( n = \langle\text{value}\rangle \).

Constraint: \( n \geq 0 \).

\text{NE_INT_2}

On entry, \( \text{pda} = \langle\text{value}\rangle \) and \( n = \langle\text{value}\rangle \).

Constraint: \( \text{pda} \geq n \).

On entry, \( \text{pde} = \langle\text{value}\rangle \) and \( n = \langle\text{value}\rangle \).

Constraint: \( \text{pde} \geq n \).

\text{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.
The principal logarithm is not defined in this case, so a non-principal logarithm was returned.

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

A is singular so the logarithm cannot be computed.

The matrix logarithm reduces to evaluating the logarithm of the eigenvalues of $A$ and then constructing $\log(A)$ using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm. The sensitivity of the computation of $\log(A)$ and $L(A, E)$ is worst when $A$ has an eigenvalue of very small modulus or has a complex conjugate pair of eigenvalues lying close to the negative real axis. See Al–Mohy and Higham (2011), Al–Mohy et al. (2012) and Section 11.2 of Higham (2008) for details and further discussion.

Parallelism and Performance

The cost of the algorithm is $O(n^3)$ floating-point operations. The complex allocatable memory required is approximately $5n^2$; see Al–Mohy et al. (2012) for further details.

If the matrix logarithm alone is required, without the Fréchet derivative, then nag_matop_complex_gen_matrix_log (f01fjc) should be used. If the condition number of the matrix logarithm is required then nag_matop_complex_gen_matrix_cond_log (f01kjc) should be used. The real analogue of this function is nag_matop_real_gen_matrix_frcht_log (f01jkc).

This example finds the principal matrix logarithm $\log(A)$ and the Fréchet derivative $L(A, E)$, where

$$A = \begin{pmatrix}
1 + 4i & 3i & i & 2 \\
2i & 3 & 1 & 1 + i \\
i & 2 + i & 2 & i \\
1 + 2i & 3 + 2i & 1 + 2i & 3 + i
\end{pmatrix} \quad \text{and} \quad E = \begin{pmatrix}
1 & 1 + 2i & 2 & 2 + i \\
1 + 3i & i & 1 & 0 \\
2i & 4 + i & 1 & 1 \\
1 & 2 + 2i & 3i & 1
\end{pmatrix}.$$
10.1 Program Text

/* nag_matop_complex_gen_matrix_frcht_log (f01kkc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 24, 2013. */
*/
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#include <nagx04.h>

#define A(I,J) a[J*pda + I]
#define E(I,J) e[J*pde + I]

int main(void)
{
    /* Scalars */
    Integer exit_status = 0;
    Integer pda, pde;
    Integer i, j, n;
    /* Arrays */
    Complex *a = 0;
    Complex *e = 0;
    /* Nag Types */
    Nag_OrderType order = Nag_ColMajor;
    NagError fail;

    INIT_FAIL(fail);

    printf("nag_matop_complex_gen_matrix_frcht_log (f01kkc) ");
    printf("Example Program Results\n\n");
    fflush(stdout);

    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n"]);
    #else
    scanf("%*[\n"]);
    #endif

    /* Read in the problem size */
    #ifdef _WIN32
    scanf_s("%"NAG_IFMT"%*[\n]", &n);
    #else
    scanf("%"NAG_IFMT"%*[\n]", &n);
    #endif

    pda = n;
    if (!(a = NAG_ALLOC(pda*n, Complex))) {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
    pde = n;
    if (!(e = NAG_ALLOC(pde*n, Complex))) {
        printf("Allocation failure\n");
        exit_status = -2;
        goto END;
    }

    /* Read in the matrix A from data file */
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            #ifdef _WIN32
            scanf_s(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im);
            #else
            scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im);
            #endif

    #ifdef _WIN32

    #else

    #endif

    #ifdef _WIN32

    #else

    #endif

END:
/* Read in the matrix E from data file. */
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
#ifdef _WIN32
    scanf_s(" ( \%lf , \%lf ) ", &E(i, j).re, &E(i, j).im);
#else
    scanf(" ( \%lf , \%lf ) ", &E(i, j).re, &E(i, j).im);
#endif
#ifdef _WIN32
    scanf_s("%*[\n"]);
#else
    scanf("%*[\n"]);
#endif
/* Find log(A) and L(A,E) using nag_matop_complex_gen_matrix_frcht_log (f01kkc)
* Frechet derivative of complex matrix logarithm */
nag_matop_complex_gen_matrix_frcht_log(n, a, pda, e, pde, &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_matop_complex_gen_matrix_frcht_log (f01kkc)\n", fail.message);
    exit_status = 1;
    goto END;
}
/* Print matrix log(A) using nag_gen_cmplx_mat_print (x04dac)
* Print complex general matrix (easy-to-use) */
nag_gen_cmplx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda, "log(A)", NULL, &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_gen_cmplx_mat_print (x04dac)\n", fail.message);
    exit_status = 2;
    goto END;
}
/* Print matrix L(A,E) using nag_gen_cmplx_mat_print (x04dac)
* Print complex general matrix (easy-to-use) */
nag_gen_cmplx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, e, pde, "L(A,E)", NULL, &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_gen_cmplx_mat_print (x04dac)\n", fail.message);
    exit_status = 3;
    goto END;
}
END:
NAG_FREE(a);
NAG_FREE(e);
return exit_status;

10.2 Program Data
nag_matop_complex_gen_matrix_frcht_log (f01kkc) Example Program Data

4 :Value of n

(1.0,4.0) (0.0,3.0) (0.0,1.0) (2.0,0.0)
(0.0,2.0) (3.0,0.0) (1.0,0.0) (1.0,1.0)
(0.0,1.0) (2.0,1.0) (2.0,0.0) (0.0,1.0)
10.3 Program Results

nag_matop_complex_gen_matrix_frcht_log (f01kkc) Example Program Results

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4188</td>
<td>0.2758</td>
<td>-0.2240</td>
<td>0.4528</td>
</tr>
<tr>
<td></td>
<td>1.2438</td>
<td>1.0040</td>
<td>0.0826</td>
<td>-0.5887</td>
</tr>
<tr>
<td>2</td>
<td>0.2299</td>
<td>1.0702</td>
<td>0.5292</td>
<td>0.1976</td>
</tr>
<tr>
<td></td>
<td>0.4825</td>
<td>-0.3306</td>
<td>-0.0422</td>
<td>0.1532</td>
</tr>
<tr>
<td>3</td>
<td>0.1328</td>
<td>0.9235</td>
<td>0.6051</td>
<td>-0.1211</td>
</tr>
<tr>
<td></td>
<td>-0.0462</td>
<td>0.3060</td>
<td>-0.0973</td>
<td>0.2966</td>
</tr>
<tr>
<td>4</td>
<td>0.4704</td>
<td>1.0779</td>
<td>0.2724</td>
<td>0.9612</td>
</tr>
<tr>
<td></td>
<td>-0.0891</td>
<td>0.0538</td>
<td>0.7627</td>
<td>0.2680</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1620</td>
<td>-0.0593</td>
<td>-0.1543</td>
<td>0.5534</td>
</tr>
<tr>
<td></td>
<td>-0.6532</td>
<td>0.8434</td>
<td>-1.3537</td>
<td>0.0869</td>
</tr>
<tr>
<td>2</td>
<td>0.6673</td>
<td>0.0637</td>
<td>0.3421</td>
<td>-0.4639</td>
</tr>
<tr>
<td></td>
<td>0.7351</td>
<td>-0.0911</td>
<td>0.1136</td>
<td>-0.3399</td>
</tr>
<tr>
<td>3</td>
<td>-0.2500</td>
<td>1.4898</td>
<td>-0.1547</td>
<td>0.3319</td>
</tr>
<tr>
<td></td>
<td>-0.0433</td>
<td>0.6186</td>
<td>-0.0495</td>
<td>-0.3078</td>
</tr>
<tr>
<td>4</td>
<td>-0.4004</td>
<td>0.5834</td>
<td>-0.5153</td>
<td>0.4407</td>
</tr>
<tr>
<td></td>
<td>-0.5893</td>
<td>-0.5926</td>
<td>1.4107</td>
<td>0.1236</td>
</tr>
</tbody>
</table>