NAG Library Function Document

nag_opt_nlp (e04ucc)

1 Purpose

nag_opt_nlp (e04ucc) is designed to minimize an arbitrary smooth function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a sequential quadratic programming (SQP) method. You should supply as many first derivatives as possible; any unspecified derivatives are approximated by finite differences. It is not intended for large sparse problems.

nag_opt_nlp (e04ucc) may also be used for unconstrained, bound-constrained and linearly constrained optimization.

2 Specification

```c
#include <nag.h>
#include <nage04.h>

void nag_opt_nlp (Integer n, Integer nclin, Integer ncnlin, const double a[],
                  Integer tda, const double bl[], const double bu[],
                  void (*objfun)(Integer n, const double x[], double *objf, double g[],
                  Nag_Comm *comm),
                  void (*confun)(Integer n, Integer ncnlin, const Integer needc[],
                  const double x[], double conf[], double conjac[], Nag_Comm *comm),
                  double x[], double *objf, double g[], Nag_E04_Opt *options,
                  Nag_Comm *comm, NagError *fail)
```

3 Description

nag_opt_nlp (e04ucc) is designed to solve the nonlinear programming problem – the minimization of a smooth nonlinear function subject to a set of constraints on the variables. The problem is assumed to be stated in the following form:

\[
\begin{align*}
\text{minimize} & \quad F(x) \\
\text{subject to} & \quad l \leq \begin{pmatrix} x \\ A_L x \\ c(x) \end{pmatrix} \leq u,
\end{align*}
\]

where \(F(x) \) (the objective function) is a nonlinear function, \(A_L \) is an \(n_L \) by \(n \) constant matrix, and \(c(x) \) is an \(n_N \) element vector of nonlinear constraint functions. (The matrix \(A_L \) and the vector \(c(x) \) may be empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least twice-continuously differentiable. (The method of nag_opt_nlp (e04ucc) will usually solve (1) if there are only isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear constraints, we prefer to distinguish between them for reasons of computational efficiency. For the same reason, the linear constraints should not be included in the definition of the nonlinear constraints. Upper and lower bounds are specified for all the variables and for all the constraints. An equality constraint can be specified by setting \(l_i = u_i \). If certain bounds are not present, the associated elements of \(l \) or \(u \) can be set to special values that will be treated as \(-\infty \) or \(+\infty \). (See the description of the optional argument \text{options.inf_bound} in Section 12.2.)

If there are no nonlinear constraints in (1) and \(F \) is linear or quadratic, then one of nag_opt_lp (e04mfc), nag_opt_lin_lsq (e04ncc) or nag_opt_qp (e04nfc) will generally be more efficient.
You must supply an initial estimate of the solution to (1), together with functions that define \(F(x), c(x) \) and as many first partial derivatives as possible; unspecified derivatives are approximated by finite differences.

The objective function is defined by function \texttt{objfun}, and the nonlinear constraints are defined by function \texttt{confun}. On every call, these functions must return appropriate values of the objective and nonlinear constraints. You should also provide the available partial derivatives. Any unspecified derivatives are approximated by finite differences; see Section 12.2 for a discussion of the optional arguments \texttt{options.obj_deriv} and \texttt{options.con_deriv}. Just before either \texttt{objfun} or \texttt{confun} is called, each element of the current gradient array \(g \) or \(\texttt{conjac} \) is initialized to a special value. On exit, any element that retains the value is estimated by finite differences. Note that if there are any nonlinear constraints, then the first call to \texttt{confun} will precede the first call to \texttt{objfun}.

For maximum reliability, it is preferable if you provide all partial derivatives (see Chapter 8 of Gill et al. (1981), for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to provide as many as possible. While developing the functions \texttt{objfun} and \texttt{confun}, the optional argument \texttt{options.verify_grad} (see Section 12.2) should be used to check the calculation of any known gradients.

The method used by \texttt{nag_opt_nlp (e04ucc)} is described in detail in Section 11.

4 References

Murtagh B A and Saunders M A (1983) MINOS 5.0 user’s guide \textit{Report SOL} 83-20 Department of Operations Research, Stanford University

5 Arguments

1: n – Integer

On entry: n, the number of variables.

Constraint: n > 0.

2: nclin – Integer

On entry: nL, the number of general linear constraints.

Constraint: nclin ≥ 0.

3: ncnlin – Integer

On entry: nN, the number of nonlinear constraints.

Constraint: ncnlin ≥ 0.

4: a[ncolin × tda] – const double

On entry: the ith row of a must contain the coefficients of the ith general linear constraint (the ith row of the matrix AL in (1)). The jth element of AL must be stored in \(a[i - 1 \times tda + j - 1]\), for \(i = 1, 2, \ldots, nL\).

If nclin = 0 then the array a is not referenced.

5: tda – Integer

On entry: the stride separating matrix column elements in the array a.

Constraint: if nclin > 0, tda ≥ n

6: bl[n + nclin + ncnlin] – const double

7: bu[n + nclin + ncnlin] – const double

On entry: bl must contain the lower bounds and bu the upper bounds, for all the constraints in the following order. The first n elements of each array must contain the bounds on the variables, the next nL elements the bounds for the general linear constraints (if any), and the next nN elements the bounds for the nonlinear constraints (if any). To specify a nonexistent lower bound (i.e., \(l_j = -\infty\)), set \(bl[j - 1] = -\text{options.inf_bound}\), and to specify a nonexistent upper bound (i.e., \(u_j = +\infty\)), set \(bu[j - 1] = \text{options.inf_bound}\), where options.inf_bound is one of the optional arguments (default value \(10^{20}\), see Section 12.2). To specify the jth constraint as an equality, set \(bl[j - 1] = bu[j - 1] = \beta\), say, where \(|\beta| < \text{options.inf_bound}\).

Constraints:

\[bl[j - 1] \leq bu[j - 1], \text{ for } j = 1, 2, \ldots, n + nclin + ncnlin;\]

if \(bl[j - 1] = bu[j - 1] = \beta\), \(|\beta| < \text{options.inf_bound}\).

8: objfun – function, supplied by the user

External Function

objfun must calculate the objective function \(F(x)\) and (optionally) its gradient \(g(x) = \frac{\partial F}{\partial x_j}\) for a specified n element vector x.

The specification of objfun is:

```c
void objfun (Integer n, const double x[], double *objf, double g[], Nag_Comm *comm)
```

1: n – Integer

On entry: n, the number of variables.
2: \(\mathbf{x}[n] \) – const double

Input

On *entry*: \(\mathbf{x} \), the vector of variables at which the value of \(F \) and/or all available elements of its gradient are to be evaluated.

3: \(\text{objf} \) – double *

Output

On *exit*: if \(\text{comm} \rightarrow \text{flag} = 0 \) or 2, \text{objfun} must set \text{objf} to the value of the objective function \(F \) at the current point \(x \). If it is not possible to evaluate \(F \) then \text{objfun} should assign a negative value to \(\text{comm} \rightarrow \text{flag} \); nag_opt_nlp (e04ucc) will then terminate.

4: \(\mathbf{g}[n] \) – double

Output

On *exit*: if \(\text{comm} \rightarrow \text{flag} = 2 \), \(\mathbf{g} \) must contain the elements of the vector \(g(x) \) given by

\[
g(x) = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \ldots, \frac{\partial F}{\partial x_n} \right)^T,
\]

where \(\frac{\partial F}{\partial x_i} \) is the partial derivative of the objective function with respect to the \(i \)th variable evaluated at the point \(x \), for \(i = 1, 2, \ldots, n \).

If the optional argument \text{options.obj_deriv} = \text{Nag_TRUE} (the default), all elements of \(\mathbf{g} \) must be set; if \text{options.obj_deriv} = \text{Nag_FALSE}, any available elements of the vector \(g(x) \) must be assigned to the elements of \(\mathbf{g} \); the remaining elements must remain unchanged.

5: \(\text{comm} \) – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to \text{objfun}.

\textbf{flag} – Integer

Input/Output

On entry: \text{objfun} is called with \(\text{comm} \rightarrow \text{flag} \) set to 0 or 2.

If \(\text{comm} \rightarrow \text{flag} = 0 \) then only \text{objf} is referenced.

If \(\text{comm} \rightarrow \text{flag} = 2 \) then both \text{objf} and \(\mathbf{g} \) are referenced.

On exit: if \text{objfun} resets \(\text{comm} \rightarrow \text{flag} \) to some negative number then nag_opt_nlp (e04ucc) will terminate immediately with the error indicator NE_USER_STOP. If \text{fail} is supplied to nag_opt_nlp (e04ucc), \text{fail}.\text{errnum} will be set to your setting of \(\text{comm} \rightarrow \text{flag} \).

\textbf{first} – Nag_Boolean

Input

On entry: will be set to \text{Nag_TRUE} on the first call to \text{objfun} and \text{Nag_FALSE} for all subsequent calls.

\textbf{nf} – Integer

Input

On entry: the number of evaluations of the objective function; this value will be equal to the number of calls made to \text{objfun} including the current one.

\textbf{user} – double *

\textbf{iuser} – Integer *

\textbf{p} – Pointer

The type Pointer will be void * with a C compiler that defines void * and char * otherwise.

Before calling nag_opt_nlp (e04ucc) these pointers may be allocated memory and initialized with various quantities for use by \text{objfun} when called from nag_opt_nlp (e04ucc).
Note: `objfun` should be tested separately before being used in conjunction with `nag_opt_nlp (e04ucc)`. The optional arguments `options.verify_grad` and `options.max_iter` can be used to assist this process. The array `x` must not be changed by `objfun`.

If the function `objfun` does not calculate all of the gradient elements then the optional argument `options.obj_deriv` should be set to Nag_FALSE.

9: `confun` – function, supplied by the user

`confun` must calculate the vector \(c(x) \) of nonlinear constraint functions and (optionally) its Jacobian \((\frac{\partial c}{\partial x}) \) for a specified \(n \) element vector \(x \). If there are no nonlinear constraints (i.e., \(ncnlin = 0 \)), `confun` will never be called and the NAG defined null void function pointer, `NULLFN`, can be supplied in the call to `nag_opt_nlp (e04ucc)`. If there are nonlinear constraints the first call to `confun` will occur before the first call to `objfun`.

The specification of `confun` is:

```c
void confun (Integer n, Integer ncnlin, const Integer needc[],
            const double x[], double conf[], double conjac[], Nag_Comm *comm)
```

1: \(n \) – Integer

`On entry`: \(n \), the number of variables.

2: \(ncnlin \) – Integer

`On entry`: \(nN \), the number of nonlinear constraints.

3: \(needc[ncnlin] \) – const Integer

`On entry`: the indices of the elements of `conf` and/or `conjac` that must be evaluated by `confun`. If \(needc[i-1] > 0 \) then the \(i \)th element of `conf` and/or the available elements of the \(i \)th row of `conjac` (see argument `comm->flag` below) must be evaluated at \(x \).

4: \(x[n] \) – const double

`On entry`: the vector of variables \(x \) at which the constraint functions and/or all available elements of the constraint Jacobian are to be evaluated.

5: \(conf[ncnlin] \) – double

`On exit`: if \(needc[i-1] > 0 \) and `comm->flag` = 0 or 2, \(conf[i-1] \) must contain the value of the \(i \)th constraint at \(x \). The remaining elements of `conf`, corresponding to the non-positive elements of `needc`, are ignored.

6: \(conjac[ncnlin \times n] \) – double

`On exit`: if \(needc[i-1] > 0 \) and `comm->flag` = 2, the \(i \)th row of `conjac` (i.e., the elements `conjac[(i-1) \times n + j-1]`, for \(j = 1, 2, \ldots, n \)) must contain the available elements of the vector \(\nabla c_i \) given by

\[
\nabla c_i = \left(\frac{\partial c_i}{\partial x_1}, \frac{\partial c_i}{\partial x_2}, \ldots, \frac{\partial c_i}{\partial x_n} \right)^T,
\]

where \(\frac{\partial c_i}{\partial x_j} \) is the partial derivative of the \(i \)th constraint with respect to the \(j \)th variable, evaluated at the point \(x \). The remaining rows of `conjac`, corresponding to non-positive elements of `needc`, are ignored.

If the optional argument `options.con_deriv` = Nag_TRUE (the default), all elements of `conjac` must be set; if `options.con_deriv` = Nag_FALSE, then any available partial
derivatives of \(c_i(x) \) must be assigned to the elements of \(\text{conjac} \); the remaining elements must remain unchanged.

If all elements of the constraint Jacobian are known (i.e., \(\text{options.con.deriv} = \text{Nag_TRUE} \); see Section 12.2), any constant elements may be assigned to \(\text{conjac} \) one time only at the start of the optimization. An element of \(\text{conjac} \) that is not subsequently assigned in \(\text{confun} \) will retain its initial value throughout.

Constant elements may be loaded into \(\text{conjac} \) during the first call to \(\text{confun} \). The ability to preload constants is useful when many Jacobian elements are identically zero, in which case \(\text{conjac} \) may be initialized to zero at the first call when \(\text{comm} \rightarrow \text{first} = \text{Nag_TRUE} \).

It must be emphasized that, if \(\text{options.con.deriv} = \text{Nag_FALSE} \), unassigned elements of \(\text{conjac} \) are not treated as constant; they are estimated by finite differences, at non-trivial expense. If you do not supply a value for the optional argument \(\text{options.f.diff.int} \) (the default; see Section 12.2), an interval for each element of \(x \) is computed automatically at the start of the optimization. The automatic procedure can usually identify constant elements of \(\text{conjac} \), which are then computed once only by finite differences.

7: \hspace{1em} \text{comm} \rightarrow \text{Nag_Comm} \ *

Pointer to structure of type \(\text{Nag_Comm} \); the following members are relevant to \(\text{confun} \).

\begin{itemize}
 \item \text{flag} \rightarrow \text{Integer} \hspace{1em} \text{Input/Output}
 \begin{itemize}
 \item \text{On entry:} \(\text{confun} \) is called with \(\text{comm} \rightarrow \text{flag} \) set to 0 or 2.
 \item If \(\text{comm} \rightarrow \text{flag} = 0 \) then only \(\text{conf} \) is referenced.
 \item If \(\text{comm} \rightarrow \text{flag} = 2 \) then both \(\text{conf} \) and \(\text{conjac} \) are referenced.
 \item \text{On exit:} if \(\text{confun} \) resets \(\text{comm} \rightarrow \text{flag} \) to some negative number then \(\text{nag_opt_nlp} \) (e04ucc) will terminate immediately with the error indicator \text{NE_USER_STOP}. If \(\text{fail} \) is supplied to \(\text{nag_opt_nlp} \) (e04ucc) \(\text{fail.errnum} \) will be set to your setting of \(\text{comm} \rightarrow \text{flag} \).
 \end{itemize}
 \item \text{first} \rightarrow \text{Nag_Boolean} \hspace{1em} \text{Input}
 \begin{itemize}
 \item \text{On entry:} will be set to \text{Nag_TRUE} on the first call to \(\text{confun} \) and \text{Nag_FALSE} for all subsequent calls.
 \end{itemize}
 \item user \rightarrow \text{double} \ *
 \item iuser \rightarrow \text{Integer} \ *
 \item p \rightarrow \text{Pointer}
 \begin{itemize}
 \item The type \text{Pointer} will be \text{void} \ * \ with a C compiler that defines \text{void} \ * \ and \text{char} \ * \ otherwise.
 \item Before calling \(\text{nag_opt_nlp} \) (e04ucc) these pointers may be allocated memory and initialized with various quantities for use by \(\text{confun} \) when called from \(\text{nag_opt_nlp} \) (e04ucc).
 \end{itemize}
\end{itemize}

\textbf{Note:} \(\text{confun} \) should be tested separately before being used in conjunction with \(\text{nag_opt_nlp} \) (e04ucc). The optional arguments \(\text{options.verify.grad} \) and \(\text{options.max_iter} \) can be used to assist this process. The array \(x \) must \textbf{not} be changed by \(\text{confun} \).

If \(\text{confun} \) does not calculate all of the elements of the constraint gradients then the optional argument \(\text{options.con.deriv} \) should be set to \text{Nag_FALSE}.

10: \hspace{1em} \text{x[n]} \rightarrow \text{double} \hspace{1em} \text{Input/Output}

\begin{itemize}
 \item \text{On entry:} an initial estimate of the solution.
 \item \text{On exit:} the final estimate of the solution.
\end{itemize}
11: \texttt{objf} – double *
\textit{Output}

On exit: the value of the objective function at the final iterate.

12: \texttt{g[n]} – double
\textit{Output}

On exit: the gradient of the objective function at the final iterate (or its finite difference approximation).

13: \texttt{options} – Nag_E04_Opt *
\textit{Input/Output}

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional arguments for nag_opt_nlp (e04ucc). These structure members offer the means of adjusting some of the argument values of the algorithm and on output will supply further details of the results. A description of the members of \texttt{options} is given below in Section 12. Some of the results returned in \texttt{options} can be used by nag_opt_nlp (e04ucc) to perform a ‘warm start’ (see the member \texttt{options.start} in Section 12.2).

If any of these optional arguments are required, then the structure \texttt{options} should be declared and initialized by a call to nag_opt_init (e04xxc) immediately before being supplied as an argument to nag_opt_nlp (e04ucc).

14: \texttt{comm} – Nag_Comm *
\textit{Input/Output}

Note: \texttt{comm} is a NAG defined type (see Section 3.2.1.1 in the Essential Introduction).

On entry/exit: structure containing pointers for communication to the user-supplied functions \texttt{objfun} and \texttt{confun}, and the optional user-defined printing function; see the description of \texttt{objfun} and \texttt{confun} and Section 12.3.1 for details. If you do not need to make use of this communication feature the null pointer \texttt{NAGCOMM_NULL} may be used in the call to nag_opt_nlp (e04ucc); \texttt{comm} will then be declared internally for use in calls to user-supplied functions.

15: \texttt{fail} – NagError *
\textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

5.1 Description of the Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled with the structure members \texttt{options.print_level} and \texttt{options.minor_print_level} (see Section 12.2). The default setting of \texttt{options.print_level} = Nag_Soln_Iter and \texttt{options.minor_print_level} = Nag_NoPrint provides a single line of output at each iteration and the final result. This section describes the default printout produced by nag_opt_nlp (e04ucc).

The following line of summary output (< 80 characters) is produced at every major iteration. In all cases, the values of the quantities printed are those in effect on completion of the given iteration.

- \textbf{Maj} is the major iteration count.
- \textbf{Mnr} is the number of minor iterations required by the feasibility and optimality phases of the QP subproblem. Generally, \texttt{Mnr} will be 1 in the later iterations, since theoretical analysis predicts that the correct active set will be identified near the solution (see Section 11).

Note that \texttt{Mnr} may be greater than the optional argument \texttt{options.minor_max_iter} (default value = max(50,3(n+nL+nN)); see Section 12.2) if some iterations are required for the feasibility phase.

- \textbf{Step} is the step taken along the computed search direction. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.

- \textbf{Merit function} is the value of the augmented Lagrangian merit function (12) at the current iterate. This function will decrease at each iteration unless it was necessary to increase the penalty arguments (see Section 11.3). As the solution is approached, Merit function will converge to the value of the objective function at the solution.
If the QP subproblem does not have a feasible point (signified by I at the end of the current output line), the merit function is a large multiple of the constraint violations, weighted by the penalty arguments. During a sequence of major iterations with infeasible subproblems, the sequence of Merit Function values will decrease monotonically until either a feasible subproblem is obtained or nag_opt_nlp (e04ucc) terminates with fail code NW_NONLIN_NOT_FEASIBLE (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains Objective, the value of the objective function \(F(x) \). The objective function will decrease monotonically to its optimal value when there are no nonlinear constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (not printed if ncnlin is zero). Violtn will be approximately zero in the neighbourhood of a solution.

Norm Gz is \(\|Z^T g_R\| \), the Euclidean norm of the projected gradient (see Section 11.1). Norm Gz will be approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation \(H_Z = Z^T H_R Z = R_Z^T R_Z \); see (6) and (11). The larger this number, the more difficult the problem.

The line of output may be terminated by one of the following characters:

M is printed if the quasi-Newton update was modified to ensure that the Hessian approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and constraint gradients. If the value of Step is zero, the switch to central differences was made because no lower point could be found in the line search. (In this case, the QP subproblem is re-solved with the central difference gradient and Jacobian.) If the value of Step is nonzero, central differences were computed because Norm Gz and Violtn imply that \(x \) is close to a Kuhn–Tucker point (see Section 11.1).

L is printed if the line search has produced a relative change in \(x \) greater than the value defined by the optional argument options.step_limit (default value = 2.0; see Section 12.2). If this output occurs frequently during later iterations of the run, options.step_limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal condition estimator of \(R \) indicates that the approximate Hessian is badly conditioned, the approximate Hessian is refactorized using column interchanges. If necessary, \(R \) is modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable.

Varbl gives the name (V) and index \(j \), for \(j = 1, 2, \ldots, n \) of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside the upper or lower bounds by more than the feasibility tolerances specified by the optional arguments options.lin_feas_tol and options.nonlin_feas_tol (see Section 12.2), State will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information about the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but its Lagrange Multiplier is essentially zero. This means that if the variable were allowed to start moving away from its bound, there would be no change to the objective function. The values of the other free variables might change, giving
The meaning of the printout for linear and nonlinear constraints is the same as that given above for

Lower bound

is the lower bound specified for the variable \(j \). (None indicates that \(bl[j - 1] \leq \text{options.inf_bound} \), where \text{options.inf_bound} is the optional argument.)

Upper bound

is the upper bound specified for the variable \(j \). (None indicates that \(bu[j - 1] \geq \text{options.inf_bound} \), where \text{options.inf_bound} is the optional argument.)

Lagr Mult

is the value of the Lagrange multiplier for the associated bound constraint. This will be zero if State is FR unless \(bl[j - 1] \leq -\text{options.inf_bound} \) and \(bu[j - 1] \geq \text{options.inf_bound} \), in which case the entry will be blank. If \(x \) is optimal, the multiplier should be non-negative if State is LL, and non-positive if State is UL.

Residual

is the difference between the variable Value and the nearer of its (finite) bounds \(bl[j - 1] \) and \(bu[j - 1] \). A blank entry indicates that the associated variable is not bounded (i.e., \(bl[j - 1] \leq -\text{options.inf_bound} \) and \(bu[j - 1] \geq \text{options.inf_bound} \)).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for variables, with ‘variable’ replaced by ‘constraint’. \(bl[j - 1] \) and \(bu[j - 1] \) are replaced by \(bl[n + j - 1] \) and \(bu[n + j - 1] \) respectively, and with the following changes in the heading:

L Con

gives the name (L) and index \(j \), for \(j = 1, 2, \ldots, nL \), of the linear constraint.

N Con

gives the name (N) and index \(j - nL \), for \(j = nL + 1, nL + 2, \ldots, nL + nN \) of the nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one of their bounds by more than \text{options.lin_feas.tol} and for nonlinear constraints which violate one of their bounds by more than \text{options.nonlin_feas.tol}.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this precision.

6 Error Indicators and Warnings

\textbf{NE_2_INT_ARG_LT}

On entry, \(tda = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(tda \geq n \).

This error message is output only if \(nclin > 0 \).

\textbf{NE_2_INT_OPT_ARG_CONS}

On entry, \(\text{options.con_check_start} = \langle \text{value} \rangle \) while \(\text{options.con_check_stop} = \langle \text{value} \rangle \).

Constraint: \(\text{options.con_check_start} \leq \text{options.con_check_stop} \).

On entry, \(\text{options.obj_check_start} = \langle \text{value} \rangle \) while \(\text{options.obj_check_stop} = \langle \text{value} \rangle \).

Constraint: \(\text{options.obj_check_start} \leq \text{options.obj_check_stop} \).

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.
NE_BAD_PARAM

On entry, argument `options.minor_print_level` had an illegal value.
On entry, argument `options.print_deriv` had an illegal value.
On entry, argument `options.print_level` had an illegal value.
On entry, argument `options.start` had an illegal value.
On entry, argument `options.verify_grad` had an illegal value.

NE_BOUND

The lower bound for variable `<value>` (array element `bl[(value)]`) is greater than the upper bound.

NE_BOUND_EQ

The lower bound and upper bound for variable `<value>` (array elements `bl[(value)]` and `bu[(value)]`) are equal but they are greater than or equal to `options.inf_bound`.

NE_BOUND_EQ_LCON

The lower bound and upper bound for linear constraint `<value>` (array elements `bl[(value)]` and `bu[(value)]`) are equal but they are greater than or equal to `options.inf_bound`.

NE_BOUND_EQ_NLCON

The lower bound and upper bound for nonlinear constraint `<value>` (array elements `bl[(value)]` and `bu[(value)]`) are equal but they are greater than or equal to `options.inf_bound`.

NE_BOUND_LCON

The lower bound for linear constraint `<value>` (array element `bl[(value)]`) is greater than the upper bound.

NE_BOUND_NLCON

The lower bound for nonlinear constraint `<value>` (array element `bl[(value)]`) is greater than the upper bound.

NE_DERIV_ERRORS

Large errors were found in the derivatives of the objective function and/or nonlinear constraints. This failure will occur if the verification process indicated that at least one gradient or Jacobian element had no correct figures. You should refer to the printed output to determine which elements are suspected to be in error.

As a first-step, you should check that the code for the objective and constraint values is correct – for example, by computing the function at a point where the correct value is known. However, care should be taken that the chosen point fully tests the evaluation of the function. It is remarkable how often the values `x = 0` or `x = 1` are used to test function evaluation procedures, and how often the special properties of these numbers make the test meaningless.

Gradient checking will be ineffective if the objective function uses information computed by the constraints, since they are not necessarily computed prior to each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’ correct. For example, the function may not be accurate to full precision because of the inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which the function depends. A common error on machines where numerical calculations are usually performed in double precision is to include even one single precision constant in the calculation of the function; since some compilers do not convert such constants to double precision, half the correct figures may be lost by such a seemingly trivial error.
NE_INT_ARG_LT
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 1 \).

On entry, \(nclin = \langle \text{value} \rangle \).
Constraint: \(nclin \geq 0 \).

On entry, \(ncnlin = \langle \text{value} \rangle \).
Constraint: \(ncnlin \geq 0 \).

NE_INT_OPT_ARG_GT
On entry, \(\text{options}.\text{con}_\text{check}_\text{start} = \langle \text{value} \rangle \).
Constraint: \(\text{options}.\text{con}_\text{check}_\text{start} \leq n \).

On entry, \(\text{options}.\text{con}_\text{check}_\text{stop} = \langle \text{value} \rangle \).
Constraint: \(\text{options}.\text{con}_\text{check}_\text{stop} \leq n \).

On entry, \(\text{options}.\text{obj}_\text{check}_\text{start} = \langle \text{value} \rangle \).
Constraint: \(\text{options}.\text{obj}_\text{check}_\text{start} \leq n \).

On entry, \(\text{options}.\text{obj}_\text{check}_\text{stop} = \langle \text{value} \rangle \).
Constraint: \(\text{options}.\text{obj}_\text{check}_\text{stop} \leq n \).

NE_INT_OPT_ARG_LT
On entry, \(\text{options}.\text{con}_\text{check}_\text{start} = \langle \text{value} \rangle \).
Constraint: \(\text{options}.\text{con}_\text{check}_\text{start} \leq n \).

On entry, \(\text{options}.\text{con}_\text{check}_\text{stop} = \langle \text{value} \rangle \).
Constraint: \(\text{options}.\text{con}_\text{check}_\text{stop} \leq n \).

On entry, \(\text{options}.\text{obj}_\text{check}_\text{start} = \langle \text{value} \rangle \).
Constraint: \(\text{options}.\text{obj}_\text{check}_\text{start} \leq n \).

On entry, \(\text{options}.\text{obj}_\text{check}_\text{stop} = \langle \text{value} \rangle \).
Constraint: \(\text{options}.\text{obj}_\text{check}_\text{stop} \leq n \).

NE_INVALID_INT_RANGE_1
Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{max}_\text{iter} \) not valid. Correct range is \(\text{options}.\text{max}_\text{iter} \geq 0 \).

Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{minor}_\text{max}_\text{iter} \) not valid. Correct range is \(\text{options}.\text{minor}_\text{max}_\text{iter} \geq 0 \).

NE_INVALID_REAL_RANGE_EF
Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{c}_\text{diff}_\text{int} \) not valid. Correct range is \(\epsilon \leq \text{options}.\text{c}_\text{diff}_\text{int} < 1.0 \).

Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{f}_\text{diff}_\text{int} \) not valid. Correct range is \(\epsilon \leq \text{options}.\text{f}_\text{diff}_\text{int} < 1.0 \).

Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{f}_\text{prec} \) not valid. Correct range is \(\epsilon \leq \text{options}.\text{f}_\text{prec} < 1.0 \).

Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{lin}_\text{feas}_\text{tol} \) not valid. Correct range is \(\epsilon \leq \text{options}.\text{lin}_\text{feas}_\text{tol} < 1.0 \).

Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{nonlin}_\text{feas}_\text{tol} \) not valid. Correct range is \(\epsilon \leq \text{options}.\text{nonlin}_\text{feas}_\text{tol} < 1.0 \).

Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{optim}_\text{tol} \) not valid. Correct range is \(\text{options}.\text{f}_\text{prec} \leq \text{options}.\text{optim}_\text{tol} < 1.0 \).

NE_INVALID_REAL_RANGE_F
Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{inf}_\text{bound} \) not valid. Correct range is \(\text{options}.\text{inf}_\text{bound} > 0.0 \).

Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{inf}_\text{step} \) not valid. Correct range is \(\text{options}.\text{inf}_\text{step} > 0.0 \).

Value \(\langle \text{value} \rangle \) given to \(\text{options}.\text{step}_\text{limit} \) not valid. Correct range is \(\text{options}.\text{step}_\text{limit} > 0.0 \).
NE_INVALID_REAL_RANGE_FF

Value \langle value \rangle given to options.crash_tol not valid. Correct range is
0.0 \leq \text{options.crash_tol} \leq 1.0.

Value \langle value \rangle given to options.linesearch_tol not valid. Correct range is
0.0 \leq \text{options.linesearch_tol} < 1.0.

NE_NOT_APPEND_FILE

Cannot open file \langle string \rangle for appending.

NE_NOT_CLOSE_FILE

Cannot close file \langle string \rangle.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_STATE_VAL

\text{options.state} \langle value \rangle is out of range. \text{options.state} \langle value \rangle = \langle value \rangle.

NE_USER_STOP

User requested termination, user flag value = \langle value \rangle.

This exit occurs if you set \text{comm\rightarrow flag} to a negative value in \text{objfun} or \text{confun}. If \text{fail} is supplied
the value of \text{fail.errnum} will be the same as your setting of \text{comm\rightarrow flag}.

NE_WRITE_ERROR

Error occurred when writing to file \langle string \rangle.

NW_KT_CONDITIONS

The current point cannot be improved upon. The final point does not satisfy the first-order Kuhn–
Tucker conditions and no improved point for the merit function could be found during the final
line search.

The Kuhn–Tucker conditions are specified in Section 11.1, and the merit function is described in
Section 11.3 and Section 12.3.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of
the optional argument \text{options.optim_tol} (default value = \epsilon_r^{0.8}, where \epsilon_r is the relative precision of
\text{F}(x); see Section 12.2) is too small. In this case you should apply the four tests described in
Section 9.1 to determine whether or not the final solution is acceptable (see Gill \textit{et al.} (1981) for a
discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and \text{nag_opt_nlp}
(e04ucc) has failed completely to move from the initial point then functions \text{objfun} and/or \text{confun}
may be incorrect. You should refer to comments under \text{fail.code} = \text{NE_DERIV_ERRORS} and
check the gradients using the optional argument \text{options.verify_grad} (default value
\text{options.verify_grad} = \text{Nag_SimpleCheck}; see Section 12.2). Unfortunately, there may be small
errors in the objective and constraint gradients that cannot be detected by the verification process.

Finite difference approximations to first derivatives are catastrophically affected by even small
inaccuracies. An indication of this situation is a dramatic alteration in the iterates if the finite
difference interval is altered. One might also suspect this type of error if a switch is made to
central differences even when \text{Norm Gz} and \text{Violtn} (see Section 5.1) are large.

Another possibility is that the search direction has become inaccurate because of ill conditioning
in the Hessian approximation or the matrix of constraints in the working set; either form of ill
conditioning tends to be reflected in large values of \text{Mnr} (the number of iterations required to solve
each \text{QP} subproblem; see Section 5.1).

If the condition estimate of the projected Hessian (\text{Cond Hz}; see Section 5.1) is extremely large, it
may be worthwhile rerunning \text{nag_opt_nlp} (e04ucc) from the final point with the optional
argument \text{options.start} = \text{Nag_Warm} (see Section 12.2). In this situation, the optional arguments
options.state and options.lambda should be left unaltered and R (in optional argument options.h) should be reset to the identity matrix.

If the matrix of constraints in the working set is ill conditioned (i.e., $\text{Cond } T$ is extremely large; see Section 12.3), it may be helpful to run nag_opt_nlp (e04ucc) with a relaxed value of the optional arguments options.lin_feas_tol and options.nonlin_feas_tol (default values $\sqrt{\epsilon}$, $\epsilon^{0.33}$ or $\sqrt{\epsilon}$, respectively, where ϵ is the machine precision; see Section 12.2). (Constraint dependencies are often indicated by wide variations in size in the diagonal elements of the matrix T, whose diagonals will be printed if options.print_level = Nag_Soln_Iter_Full (default value options.print_level = Nag_Soln_Iter; see Section 12.2).)

NW_LIN_NOT_FEASIBLE
No feasible point was found for the linear constraints and bounds. nag_opt_nlp (e04ucc) has terminated without finding a feasible point for the linear constraints and bounds, which means that either no feasible point exists for the given value of the optional argument options.lin_feas_tol (default value $= \sqrt{\epsilon}$, where ϵ is the machine precision; see Section 12.2), or no feasible point could be found in the number of iterations specified by the optional argument options.minor_max_iter (default value $= \max(50, 3(n + nL + nN))$; see Section 12.2). You should check that there are no constraint redundancies. If the data for the constraints are accurate only to an absolute precision σ, you should ensure that the value of the optional argument options.lin_feas_tol is greater than σ. For example, if all elements of A_L are of order unity and are accurate to only three decimal places, options.lin_feas_tol should be at least 10^{-3}.

NW_NONLIN_NOT_FEASIBLE
No feasible point could be found for the nonlinear constraints. The problem may have no feasible solution. This means that there has been a sequence of QP subproblems for which no feasible point could be found (indicated by I at the end of each terse line of output; see Section 5.1). This behaviour will occur if there is no feasible point for the nonlinear constraints. (However, there is no general test that can determine whether a feasible point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very first major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when earlier subproblems have been feasible, small constraint inconsistencies may be present. You should check the validity of constraints with negative values of the optional argument options.state. If you are convinced that a feasible point does exist, nag_opt_nlp (e04ucc) should be restarted at a different starting point.

NW_NOT_CONVERGED
Optimal solution found, but the sequence of iterates has not converged with the requested accuracy.
The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 11.1) to the accuracy requested, but the sequence of iterates has not yet converged. nag_opt_nlp (e04ucc) was terminated because no further improvement could be made in the merit function (see Section 12.3).
This value of fail.code may occur in several circumstances. The most common situation is that you ask for a solution with accuracy that is not attainable with the given precision of the problem (as specified by the optional argument options.f_prec (default value $= \epsilon^{0.9}$, where ϵ is the machine precision; see Section 12.2)). This condition will also occur if, by chance, an iterate is an ‘exact’ Kuhn–Tucker point, but the change in the variables was significant at the previous iteration. (This situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 9.1 are satisfied then x is likely to be a solution of (1) even if fail.code = NW_NOT_CONVERGED.
NW_OVERFLOW_WARN

Serious ill conditioning in the working set after adding constraint \(\langle \text{value} \rangle \). Overflow may occur in subsequent iterations.

If overflow occurs preceded by this warning then serious ill conditioning has probably occurred in the working set when adding a constraint. It may be possible to avoid the difficulty by increasing the magnitude of the optional argument \texttt{options.lin feas tol} (default value \(= \sqrt{\epsilon} \), where \(\epsilon \) is the machine precision; see Section 12.2) and/or the optional argument \texttt{options.nonlin feas tol} (default value \(= 0.33 \) or \(\sqrt{\epsilon} \); see Section 12.2), and rerunning the program. If the message recurs even after this change, the offending linearly dependent constraint \(j \) must be removed from the problem. If overflow occurs in one of the user-supplied functions (e.g., if the nonlinear functions involve exponentials or singularities), it may help to specify tighter bounds for some of the variables (i.e., reduce the gap between the appropriate \(l_j \) and \(u_j \)).

NW_TOO_MANY_ITER

The maximum number of iterations, \(\langle \text{value} \rangle \), have been performed.

The value of the optional argument \texttt{options.max iter} may be too small. If the method appears to be making progress (e.g., the objective function is being satisfactorily reduced), increase the value of the optional argument \texttt{options.max iter} and rerun nag_opt_nlp (e04ucc); alternatively, rerun nag_opt_nlp (e04ucc), setting the optional argument \texttt{options.start} = Nag_Warm to specify the initial working set. If the algorithm seems to be making little or no progress, however, then you should check for incorrect gradients or ill conditioning as described under \texttt{fail.code} = NW_KT_CONDITIONS.

Note that ill conditioning in the working set is sometimes resolved automatically by the algorithm, in which case performing additional iterations may be helpful. However, ill conditioning in the Hessian approximation tends to persist once it has begun, so that allowing additional iterations without altering \(R \) is usually inadvisable. If the quasi-Newton update of the Hessian approximation was reset during the latter iterations (i.e., an \(R \) occurs at the end of each line of output; see Section 5.1), it may be worthwhile setting \texttt{options.start} = Nag_Warm and calling nag_opt_nlp (e04ucc) from the final point.

7 Accuracy

If \texttt{fail.code} = NE_NOERROR on exit, then the vector returned in the array \(x \) is an estimate of the solution to an accuracy of approximately \texttt{options.optim tol} (default value \(= 10^{-8} \), where \(\epsilon_r \) is the relative precision of \(F(x) \); see Section 12.2).

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Termination Criteria

The function exits with \texttt{fail.code} = NE_NOERROR if iterates have converged to a point \(x \) that satisfies the Kuhn–Tucker conditions (see Section 11.1) to the accuracy requested by the optional argument \texttt{options.optim tol} (default value \(= 10^{-8} \), see Section 12.2).

You should also examine the printout from nag_opt_nlp (e04ucc) (see Section 5.1 or Section 12.3) to check whether the following four conditions are satisfied:

(i) the final value of \(\|Gz\| \) is significantly less than at the starting point;
(ii) during the final major iterations, the values of Step and Mnr are both one;
(iii) the last few values of both \(\text{Violtn} \) and \(\|Gz\| \) become small at a fast linear rate; and
(iv) \(\text{Cond Hz} \) is small.

If all these conditions hold, \(x \) is almost certainly a local minimum.
10 Example

This example is based on Problem 71 in Hock and Schittkowski (1981) and involves the minimization of the nonlinear function

\[F(x) = x_1 x_4 (x_1 + x_2 + x_3) + x_3 \]

subject to the bounds

\[1 \leq x_1 \leq 5 \]
\[1 \leq x_2 \leq 5 \]
\[1 \leq x_3 \leq 5 \]
\[1 \leq x_4 \leq 5 \]

to the general linear constraint

\[x_1 + x_2 + x_3 + x_4 \leq 20, \]

and to the nonlinear constraints

\[x_1^2 + x_2^2 + x_3^2 + x_4^2 \leq 40, \]
\[x_1 x_2 x_3 x_4 \geq 25. \]

The initial point, which is infeasible, is

\[x_0 = (1, 5, 5, 1)^T, \]

and \(F(x_0) = 16. \)

The optimal solution (to five figures) is

\[x^* = (1.0, 4.7430, 3.8211, 1.3794)^T, \]

and \(F(x^*) = 17.014. \) One bound constraint and both nonlinear constraints are active at the solution.

The options structure is declared and initialized by nag_opt_init (e04xcc). Two options are read from the data file by use of nag_opt_read (e04xyc). nag_opt_nlp (e04ucc) is then called to solve the problem using the function objfun and confun with elements of the objective gradient not being set at all and only some of the elements of the constraint Jacobian being provided. The memory freeing function nag_opt_free (e04xzc) is used to free the memory assigned to the pointers in the options structure. You must not use the standard C function free() for this purpose.

10.1 Program Text

/* nag_opt_nlp (e04ucc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 4, 1996. */
/* Mark 5 revised, 1998. */
/* Mark 7 revised, 2001. */
/* Mark 8 revised, 2004. */
/* */
#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C" {
#endif

static void NAG_CALL objfun(Integer n, const double x[], double *objf, double objgrd[], Nag_Comm *comm);

static void NAG_CALL confun(Integer n, Integer ncnlin, const Integer needc[],
const double x[], double conf[], double conjac[],
Nag_Comm *comm);

#ifdef __cplusplus
}
#endif
```
#define __cplusplus
}
#endif

static void NAG_CALL objfun(Integer n, const double x[], double *objf,
                             double *objgrd, Nag_Comm *comm)
{
    /* Routine to evaluate objective function and its 1st derivatives. */
    if (comm->flag == 0 || comm->flag == 2)
        *objf = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];
    /* Note, elements of the objective gradient have not been specified. */
}
} /* objfun */

static void NAG_CALL confun(Integer n, Integer ncnlin, const Integer needc[],
                              const double x[], double conf[], double conjac[],
                              Nag_Comm *comm)
{
    #define CONJAC(I, J) conjac[((I) -1)*n + (J) -1]
    /* Routine to evaluate the nonlinear constraints and their 1st derivatives. */
    /* Function Body */
    if (needc[0] > 0)
    {
        if (comm->flag == 0 || comm->flag == 2)
        if (comm->flag == 2)
            {CONJAC(1, 3) = x[2] * 2.0;
             /* Note only one constraint gradient has been specified in the first row of the constraint Jacobian. */
             }
    }
    if (needc[1] > 0)
    {
        if (comm->flag == 0 || comm->flag == 2)
        if (comm->flag == 2)
            {CONJAC(2, 2) = x[0] * x[2] * x[3];
             CONJAC(2, 3) = x[0] * x[1] * x[3];
             /* Note only two constraint gradients have been specified in the second row of the constraint Jacobian. */
             }
    }
} /* confun */
#define A(I, J) a[(I) *tda + J]

int main(void)
{
    const char *optionsfile = "e04ucce.opt";
    Integer exit_status = 0, i, j, n, nclin, ncnlin, tda, totalvars;
    Nag_Comm comm;
    NagError fail;
    Nag_E04_Opt options;
    double *a = 0, *bl = 0, *bu = 0, *objf, *objgrd = 0, *x = 0;
    INIT_FAIL(fail);

    printf("nag_opt_nlp (e04ucc) Example Program Results\n");
```
fflush(stdout);
#ifdef _WIN32
 scanf_s("%*[\n]"); /* Skip heading in data file */
#else
 scanf("%*[\n]"); /* Skip heading in data file */
#endif
#endif
#ifdef _WIN32
 scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &n, &nclin, &ncnlin);
#else
 scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &n, &nclin, &ncnlin);
#endif
if (n > 0 && nclin >= 0 && ncnlin >= 0)
{
 totalvars = n + nclin + ncnlin;
 if (!(x = NAG_ALLOC(n, double)) ||
 !(a = NAG_ALLOC(nclin*n, double)) ||
 !(bl = NAG_ALLOC(totalvars, double)) ||
 !(bu = NAG_ALLOC(totalvars, double)) ||
 !(objgrd = NAG_ALLOC(n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 tda = n;
} else
{
 printf("Invalid n or nclin or ncnlin.\n");
 exit_status = 1;
 return exit_status;
}
/* Read a, bl, bu and x from data file */
/* Read the matrix of linear constraint coefficients */
if (nclin > 0)
{
 for (i = 0; i < nclin; ++i)
 for (j = 0; j < n; ++j)
 #ifdef _WIN32
 scanf_s("%lf", &A(i, j));
 #else
 scanf("%lf", &A(i, j));
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n]"); /* Remove remainder of line */
 #else
 scanf("%*[\n]"); /* Remove remainder of line */
 #endif
 /* Read lower bounds */
 for (i = 0; i < n + nclin + ncnlin; ++i)
 #ifdef _WIN32
 scanf_s("%lf", &bl[i]);
 #else
 scanf("%lf", &bl[i]);
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 /* Read upper bounds */
 for (i = 0; i < n + nclin + ncnlin; ++i)
 #ifdef _WIN32
 scanf_s("%lf", &bu[i]);
 #else
 scanf("%lf", &bu[i]);
 #endif

Mark 25
/* Read the initial point x */
for (i = 0; i < n; ++i)
#ifdef _WIN32
 scanf_s("%lf", &x[i]);
#else
 scanf("%lf", &x[i]);
#endif
#endif
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
nag_opt_init(&options);
/* nag_opt_read (e04xyc).
* Read options from a text file
*/
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_opt_read (e04xyc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* nag_opt_nlp (e04ucc), see above. */
nag_opt_nlp(n, nclin, ncnlin, a, tda, bl, bu, objfun, confun, x, &objf,
 objgrd, &options, &comm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_opt_nlp (e04ucc).\n%s\n", fail.message);
 exit_status = 1;
}
/* Memory freeing function for use with option setting */
nag_opt_free(&options, "all", &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

END:
NAG_FREE(x);
NAG_FREE(a);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(objgrd);
return exit_status;
10.2 Program Data

nag_opt_nlp (e04ucc) Example Program Data

Values of n, nclin and ncnlin
4 1 2
1.0 1.0 1.0 1.0
1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25
1.0 5.0 5.0 1.0

nag_opt_nlp (e04ucc) Example Program Optional Parameters

Begin e04ucc
con_deriv = Nag_FALSE
obj_deriv = Nag_FALSE
End

10.3 Program Results

nag_opt_nlp (e04ucc) Example Program Results

Optional parameter setting for e04ucc.

Option file: e04ucce.opt
con_deriv set to Nag_FALSE
obj_deriv set to Nag_FALSE

Parameters to e04ucc

Number of variables........... 4
Linear constraints............. 1
Nonlinear constraints.......... 2
start....................... Nag_Cold
lin_feas_tol................. 1.05e-08
nonlin_feas_tol............... 1.05e-08
optim_tol................... 3.26e-12
linesearch Tol.............. 9.00e-01
crash Tol................... 1.00e-02
f_prec....................... 4.37e-15
inf_bound................... 1.00e+20
inf_step..................... 1.00e+20
max_iter..................... 50
minor_max_iter............... 50
hessian....................... Nag_FALSE
f_diff_int.................. Automatic
c_diff_int.................. Automatic
con_deriv.................... Nag_FALSE
print_deriv.................. Nag_D_Full
print_level................. Nag_Soln_Iter
minor_print_level............ Nag_NoPrint
outfile...................... stdout

Verification of the objective gradients.
--
The user sets 0 out of 4 objective gradient elements.
Each iteration 4 gradient elements will be estimated numerically.

Verification of the constraint gradients.

The user sets 3 out of 8 constraint gradient elements.
Each iteration, 5 gradient elements will be estimated numerically.

Simple Check:
The Jacobian seems to be ok.
The largest relative error was 5.22e-09 in constraint 1

Finite difference intervals.
1 1.00e+00 6.479651e-07 2.645420e-06 2.592083e-06
2 5.00e+00 7.825142e-07 7.936259e-06 1.565074e-06
3 5.00e+00 7.936259e-06 7.936259e-05 1.873839e-08
4 1.00e+00 9.163610e-07 2.645420e-06 1.832879e-06

Maj Mnr Step Merit function Violtn Norm Gz Cond Hz
0 5 0.0e+00 1.738281e+01 1.2e+01 7.1e-01 1.0e+00
1 1 1.0e+00 1.703169e+01 1.9e+00 4.6e-02 1.0e+00
2 1 1.0e+00 1.701442e+01 8.8e-02 2.1e-02 1.0e+00
3 1 1.0e+00 1.701402e+01 5.4e-04 3.1e-04 1.0e+00
4 1 1.0e+00 1.701402e+01 9.9e-08 7.0e-06 1.0e+00

Minor itn 1 -- Re-solve QP subproblem.
5 2 1.0e+00 1.701402e+01 4.7e-11 6.2e-08 1.0e+00 C

Exit from NP problem after 5 major iterations, 11 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
V 1 LL 1.00000e+00 1.00000e+00 5.00000e+00 1.0879e+00 0.0000e+00
V 2 FR 4.74300e+00 1.00000e+00 5.00000e+00 0.0000e+00 2.5700e-01
V 3 FR 3.82115e+00 1.00000e+00 5.00000e+00 0.0000e+00 1.1789e+00
V 4 FR 1.37941e+00 1.00000e+00 5.00000e+00 0.0000e+00 3.7941e-01

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
L 1 FR 1.09436e+01 None 2.00000e+01 0.0000e+00 9.0564e+00

N Con State Value Lower Bound Upper Bound Lagr Mult Residual
N 1 UL 4.00000e+01 None 4.00000e+01 -1.6147e-01 -3.7126e-11
N 2 LL 2.50000e+01 2.50000e+01 None 5.5229e-01 -2.8749e-11

Optimal solution found.
Final objective value = 1.7014017e+01

11 Further Description
This section gives a detailed description of the algorithm used in nag_opt_nlp (e04ucc). This, and possibly the next section, Section 12, may be omitted if the more sophisticated features of the algorithm and software are not currently of interest.

11.1 Overview
nag_opt_nlp (e04ucc) is based on the same algorithm as used in subroutine NPSOL described in Gill et al. (1986b).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. An active simple bound constraint implies that the corresponding variable is fixed at its bound, and hence the variables are partitioned into fixed and free variables. Let C denote the m by n matrix of gradients of the active general linear and nonlinear constraints. The number of fixed variables will be denoted by n_{FX}, with n_{FR} ($n_{FR} = n - n_{FX}$) the number of free variables. The subscripts ‘FX’ and ‘FR’ on a vector or matrix will denote the vector or matrix composed of the elements corresponding to fixed or free variables.

A point x is a first-order Kuhn–Tucker point for (1) (see, e.g., Powell (1974)) if the following conditions hold:

(i) x is feasible;

(ii) there exist vectors ξ and λ (the Lagrange multiplier vectors for the bound and general constraints) such that

$$g = C^T \lambda + \xi$$

where g is the gradient of F evaluated at x, and $\xi_j = 0$ if the jth variable is free.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower bound must be non-negative, and it must be non-positive for an inequality constraint active at its upper bound.
Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of C_{FR}; i.e., $C_{FR}Z = 0$. An equivalent statement of the condition (2) in terms of Z is

$$Z^Tg_{FR} = 0.$$

The vector Z^Tg_{FR} is termed the projected gradient of F at x. Certain additional conditions must be satisfied in order for a first-order Kuhn–Tucker point to be a solution of (1) (see, e.g., Powell (1974)). nag_opt_nlp (e04ucc) implements a sequential quadratic programming (SQP) method. For an overview of SQP methods, see, for example, Fletcher (1987), Gill et al. (1981) and Powell (1983).

The basic structure of nag_opt_nlp (e04ucc) involves major and minor iterations. The major iterations generate a sequence of iterates $\{x_k\}$ that converge to x^*, a first-order Kuhn–Tucker point of (1). At a typical major iteration, the new iterate \bar{x} is defined by

$$\bar{x} = x + \alpha p$$

where x is the current iterate, the non-negative scalar α is the step length, and p is the search direction. (For simplicity, we shall always consider a typical iteration and avoid reference to the index of the iteration.) Also associated with each major iteration are estimates of the Lagrange multipliers and a prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

$$\text{Minimize} \quad g^T p + \frac{1}{2} p^T H p \quad \text{subject to} \quad l \leq \tilde{t} \leq \bar{u},$$

where g is the gradient of F at x, the matrix H is a positive definite quasi-Newton approximation to the Hessian of the Lagrangian function (see Section 11.4), and A_N is the Jacobian matrix of c evaluated at x. (Finite difference estimates may be used for g and A_N; see the optional arguments options.obj_deriv and options.con_deriv in Section 12.2.) Let l in (1) be partitioned into three sections: l_B, l_L and l_N, corresponding to the bound, linear and nonlinear constraints. The vector \tilde{t} in (4) is similarly partitioned, and is defined as

$$\tilde{t}_B = l_B - x, \tilde{t}_L = l_L - A_L x, \text{ and } \tilde{t}_N = l_N - c,$$

where c is the vector of nonlinear constraints evaluated at x. The vector \bar{u} is defined in an analogous fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear and nonlinear constraints in the QP active set are the quantities Bnd, Lin and Nln in the output of nag_opt_nlp (e04ucc); see Section 12.3.) In nag_opt_nlp (e04ucc), (4) is solved using the same algorithm as used in function nag_opt_lin_lsq (e04ncc). Since solving a quadratic program is an iterative procedure, the minor iterations of nag_opt_nlp (e04ucc) are the iterations of nag_opt_lin_lsq (e04ncc). (More details about solving the subproblem are given in Section 11.2.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the subscripts ‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let C denote the m by n matrix of gradients of the general linear and nonlinear constraints in the predicted active set. First, we have available the TQ factorization of C_{FR}:

$$C_{FR} Q_{FR} = \begin{pmatrix} 0 & T \end{pmatrix},$$

where T is a nonsingular m by m reverse-triangular matrix (i.e., $t_{ij} = 0$ if $i + j < m$, and the nonsingular Q_{FR} by T_{FR} matrix Q_{FR} is the product of orthogonal transformations (see Gill et al. (1984a)).

Second, we have the upper triangular Cholesky factor R of the transformed and re-ordered Hessian matrix

$$R^T R = H_Q \equiv Q^T \tilde{H} Q,$$

where \tilde{H} is the Hessian H with rows and columns permuted so that the free variables are first, and Q is the n by n matrix.
\[Q = \begin{pmatrix} Q_{FR} & I_{FX} \end{pmatrix} \] (7)

with \(I_{FX} \) the identity matrix of order \(n_{FX} \). If the columns of \(Q_{FR} \) are partitioned so that

\[Q_{FR} = \begin{pmatrix} Z & Y \end{pmatrix}, \]

the \(n_Z \) (\(n_Z = n_{FR} - m \)) columns of \(Z \) form a basis for the null space of \(C_{FR} \). The matrix \(Z \) is used to compute the projected gradient \(Z^{T}q_{FR} \) at the current iterate. (The values \(n_Z \), \(\text{Norm } g_{FR} \) and \(\text{Norm } g_{Z} \) printed by \texttt{nag_opt_nlp} (e04ucc) give \(n_Z \) and the norms of \(g_{FR} \) and \(Z^{T}q_{FR} \); see Section 12.3.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP subproblem (4) is identical to the correct active set in a neighbourhood of \(x \). In \texttt{nag_opt_nlp} (e04ucc), this feature is exploited by using the QP active set from the previous iteration as a prediction of the active set for the next QP subproblem, which leads in practice to optimality of the subproblems in only one iteration as the solution is approached. Separate treatment of bound and linear constraints in \texttt{nag_opt_nlp} (e04ucc) also saves computation in factorizing \(C_{FR} \) and \(H_{Q} \).

Once \(p \) has been computed, the major iteration proceeds by determining a step length \(\alpha \) that produces a ‘sufficient decrease’ in an augmented Lagrangian merit function (see Section 11.3). Finally, the approximation to the transformed Hessian matrix \(H_{Q} \) is updated using a modified BFGS quasi-Newton update (see Section 11.4) to incorporate new curvature information obtained in the move from \(x \) to \(\bar{x} \).

On entry to \texttt{nag_opt_nlp} (e04ucc), an iterative procedure from \texttt{nag_opt_lin_lsq} (e04ncce) is executed, starting with the initial point you provided, to find a point that is feasible with respect to the bounds and linear constraints (using the tolerance specified by \texttt{options.lin feas tol}; see Section 12.2). If no feasible point exists for the bound and linear constraints, (1) has no solution and \texttt{nag_opt_nlp} (e04ucc) terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are feasible with respect to the bounds and linear constraints. The only exception involves variables whose bounds differ by an amount comparable to the finite difference interval (see the discussion of \texttt{options.f diff int} in Section 12.2). In contrast to the bounds and linear constraints, it must be emphasized that the nonlinear constraints will not generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the gradients you provided appear to be correct (see the optional argument \texttt{options.verify grad} in Section 12.2). In general, the check is provided at the first point that is feasible with respect to the linear constraints and bounds. However, you may request that the check be performed at the initial point.

In summary, the method of \texttt{nag_opt_nlp} (e04ucc) first determines a point that satisfies the bound and linear constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem (see Section 11.2);

(b) a linesearch with an augmented Lagrangian merit function (see Section 11.3); and

(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function (Section 11.4).

11.2 Solution of the Quadratic Programming Subproblem

The search direction \(p \) is obtained by solving (4) using the algorithm of \texttt{nag_opt_lin_lsq} (e04ncce) (see Gill \textit{et al.} (1986)), which was specifically designed to be used within an SQP algorithm for nonlinear programming.

The method of \texttt{nag_opt_lin_lsq} (e04ncce) is a two-phase (primal) quadratic programming method. The two phases of the method are: finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible region (the optimality phase). The computations in both phases are performed by the same segments of code. The two-phase nature of the algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let \(p \) denote the current estimate of the solution of (4); the new iterate \(\tilde{p} \) is defined by
\[\bar{p} = p + \sigma d \]

(8)

where, as in (3), \(\sigma \) is a non-negative step length and \(d \) is a search direction.

At the beginning of each iteration of nag_opt_lin_lsq (e04ncc), a working set is defined of constraints (general and bound) that are satisfied exactly. The vector \(d \) is then constructed so that the values of constraints in the working set remain unaltered for any move along \(d \). For a bound constraint in the working set, this property is achieved by setting the corresponding element of \(d \) to zero, i.e., by fixing the variable at its bound. As before, the subscripts ‘FX’ and ‘FR’ denote selection of the elements associated with the fixed and free variables.

Let \(C \) denote the sub-matrix of rows of

\[
\begin{pmatrix}
A_L \\
A_N
\end{pmatrix}
\]

corresponding to general constraints in the working set. The general constraints in the working set will remain unaltered if

\[C_{FR}d_{FR} = 0 \]

(9)

which is equivalent to defining \(d_{FR} \) as

\[d_{FR} = Zd_Z \]

(10)

for some vector \(d_Z \), where \(Z \) is the matrix associated with the \(TQ \) factorization (5) of \(C_{FR} \).

The definition of \(d_Z \) in (10) depends on whether the current \(p \) is feasible. If not, \(d_Z \) is zero except for an element \(\gamma \) in the \(j \)th position, where \(j \) and \(\gamma \) are chosen so that the sum of infeasibilities is decreasing along \(d \). (For further details, see Gill et al. (1986).) In the feasible case, \(d_Z \) satisfies the equations

\[R_Z^T R_Z d_Z = -Z^T q_{FR} \]

(11)

where \(R_Z \) is the Cholesky factor of \(Z^T H_{FR} Z \) and \(q \) is the gradient of the quadratic objective function \((q = g + Hp) \). (The vector \(Z^T q_{FR} \) is the projected gradient of the QP.) With (11), \(p + d \) is the minimizer of the quadratic objective function subject to treating the constraints in the working set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the subspace defined by the working set. During the feasibility phase, the projected gradient will usually be zero only at a vertex (although it may vanish at non-vertices in the presence of constraint dependencies). During the optimality phase, a zero projected gradient implies that \(p \) minimizes the quadratic objective function when the constraints in the working set are treated as equalities. In either case, Lagrange multipliers are computed. Given a positive constant \(\delta \) of the order of the machine precision, the Lagrange multiplier \(\mu_j \) corresponding to an inequality constraint in the working set at its upper bound is said to be optimal if \(\mu_j \leq \delta \) when the \(j \)th constraint is at its upper bound, or if \(\mu_j \geq \delta \) when the associated constraint is at its lower bound. If any multiplier is non-optimal, the current objective function (either the true objective or the sum of infeasibilities) can be reduced by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, no feasible point exists. The QP algorithm will then continue iterating to determine the minimum sum of infeasibilities. At this point, the Lagrange multipliers \(\mu_j \) will satisfy \(-1\delta \leq \mu_j \leq \delta \) for an inequality constraint at its upper bound, and \(-\delta \leq \mu_j \leq (1 + \delta) \) for an inequality at its lower bound. The Lagrange multiplier for an equality constraint will satisfy \(|\mu_j| \leq 1 + \delta \).

The choice of step length \(\sigma \) in the QP iteration (8) is based on remaining feasible with respect to the satisfied constraints. During the optimality phase, if \(p + d \) is feasible, \(\sigma \) will be taken as unity. (In this case, the projected gradient at \(\bar{p} \) will be zero.) Otherwise, \(\sigma \) is set to \(\sigma_M \), the step to the ‘nearest’ constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to \(C_{FR} \): if the status of a general constraint changes, a row of \(C_{FR} \) is altered; if a bound constraint enters or leaves the working set, a column of \(C_{FR} \) changes. Explicit representations are recurred of the matrices \(T \), \(Q_{FR} \) and \(R \), and of the vectors \(Q^T q \) and \(Q^T g \).
11.3 The Merit Function

After computing the search direction as described in Section 11.2, each major iteration proceeds by determining a step length α in (3) that produces a ‘sufficient decrease’ in the augmented Lagrangian merit function

$$L(x, \lambda, s) = F(x) - \sum_i \lambda_i (c_i(x) - s_i) + \frac{1}{2} \sum_i \rho_i (c_i(x) - s_i)^2,$$

where x, λ, and s vary during the linesearch. The summation terms in (12) involve only the nonlinear constraints. The vector λ is an estimate of the Lagrange multipliers for the nonlinear constraints of (1). The non-negative slack variables $\{s_i\}$ allow nonlinear inequality constraints to be treated without introducing discontinuities. The solution of the QP subproblem (4) provides a vector triple that serves as a direction of search for the three sets of variables. The non-negative vector ρ of penalty arguments is initialized to zero at the beginning of the first major iteration. Thereafter, selected elements are increased whenever necessary to ensure descent for the merit function. Thus, the sequence of norms of ρ (the printed quantity Penalty; see Section 12.3) is generally nondecreasing, although each ρ_i may be reduced a limited number of times.

The merit function (12) and its global convergence properties are described in Gill et al. (1986a).

11.4 The Quasi–Newton Update

The matrix H in (4) is a positive definite quasi-Newton approximation to the Hessian of the Lagrangian function. (For a review of quasi-Newton methods, see Dennis and Schnabel (1983).) At the end of each major iteration, a new Hessian approximation \tilde{H} is defined as a rank-two modification of H. In nag_opt_nlp (e04ucc), the BFGS quasi-Newton update is used:

$$\tilde{H} = H - \frac{1}{s^T H s} H s s^T H + \frac{1}{y^T y} y y^T,$$

where $s = \bar{x} - x$ (the change in x).

In nag_opt_nlp (e04ucc), H is required to be positive definite. If H is positive definite, \tilde{H} defined by (13) will be positive definite if and only if $y^T s$ is positive (see, e.g., Dennis and More (1977)). Ideally, y in (13) would be taken as y_L, the change in gradient of the Lagrangian function

$$y_L = \bar{g} - A_N^T \mu_N - g + A_N^T \mu_N,$$

where μ_N denotes the QP multipliers associated with the nonlinear constraints of the original problem. If $y_L^T s$ is not sufficiently positive, an attempt is made to perform the update with a vector y of the form

$$y = y_L + \sum_i \omega_i (a_i(\bar{x}) c_i(\bar{x}) - a_i(x) c_i(x)),$$

where $\omega_i \geq 0$. If no such vector can be found, the update is performed with a scaled y_L; in this case, M is printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian H_Q (6) is updated, where Q is the matrix from (5) associated with the active set of the QP subproblem. The update (12) is equivalent to the following update to H_Q:

$$\tilde{H}_Q = H_Q - \frac{1}{s_Q^T H_Q s_Q} H_Q s_Q s_Q^T H_Q + \frac{1}{y_Q^T y_Q} y_Q y_Q^T,$$

where $y_Q = Q^T y$, and $s_Q = Q^T s$. This update may be expressed as a rank-one update to R (see Dennis and Schnabel (1981)).

12 Optional Arguments

A number of optional input and output arguments to nag_opt_nlp (e04ucc) are available through the structure argument options, type Nag_E04_Opt. An argument may be selected by assigning an appropriate value to the relevant structure member; those arguments not selected will be assigned default
values. If no use is to be made of any of the optional arguments you should use the NAG defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_nlp (e04ucc); the default settings will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case initialization of the options structure will be performed automatically if not already done. Any subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, this must be done directly in the calling program; they cannot be assigned using nag_opt_read (e04xyc).

12.1 Optional Argument Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_nlp (e04ucc) together with their default values where relevant. The number ϵ is a generic notation for machine precision (see nag_machine_precision (X02AJC)).

- Nag_Start start
- Boolean list
- Nag_PrintType print_level
- Nag_PrintType minor_print_level
- char outfile[80]
- void (*print_fun)()
- Boolean obj_deriv
- Boolean con_deriv
- Nag_GradChk verify_grad
- Nag_DPrintType print_deriv
- Integer obj_check_start
- Integer obj_check_stop
- Integer con_check_start
- Integer con_check_stop
- double f_diff_int
- double c_diff_int
- Integer max_iter
- Integer minor_max_iter
- double f_prec
- double optim_tol
- double lin_feas_tol
- double nonlin_feas_tol
- double linesearch_tol
- double step_limit
- double crash_tol
- double inf_bound
- double *conf
- double *conjac
- Integer *state
- double *lambda
- double *h
- Boolean hessian
- Integer iter
- Integer nf
- Nag_Cold
- Nag_TRUE
- Nag_Soln_Iter
- Nag_NoPrint
- stdout
- NULL
- Nag_TRUE
- Nag_TRUE
- Nag_SimpleCheck
- Nag_D_Full
- 1
- n
- 1
- n
- Computed automatically
- Computed automatically
- max(50, 3(n + nclin) + 10ncnlin)
- max(50, 3(n + nclin + ncnlin))
- $\epsilon^{0.8}$
- options.f_prec$^{0.8}$
- $\epsilon^{0.33}$ or $\sqrt{\epsilon}$
- $\epsilon^{0.9}$
- $\epsilon^{0.9}$
- max((options.inf_bound, 10^{20})
- size
- ncclin
- size
- n + nclin + ncnlin
- size
- n + nclin + ncnlin
- size
- n*n
- Nag_FALSE
12.2 Description of the Optional Arguments

start – Nag_Start

Default = Nag_Cold

On entry: specifies how the initial working set is chosen in both the procedure for finding a feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter. With options.start = Nag_Cold, nag_opt_nlp (e04ucc) chooses the initial working set based on the values of the variables and constraints at the initial point. Broadly speaking, the initial working set will include equality constraints and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to within the value of optional argument options.crash_tol; see below).

With options.start = Nag_Warm, you must provide a valid definition of every array element of the optional arguments options.state, options.lambda and options.h (see below for their definitions). The options.state values associated with bounds and linear constraints determine the initial working set of the procedure to find a feasible point with respect to the bounds and linear constraints. The options.state values associated with nonlinear constraints determine the initial working set of the first QP subproblem after such a feasible point has been found. nag_opt_nlp (e04ucc) will override your specification of options.state if necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any elements of options.state which are set to -2, -1 or 4 will be reset to zero, as will any elements which are set to 3 when the corresponding elements of bl and bu are not equal. A warm start will be advantageous if a good estimate of the initial working set is available – for example, when nag_opt_nlp (e04ucc) is called repeatedly to solve related problems.

Constraint: options.start = Nag_Cold or Nag_Warm.

list – Nag_Boolean

Default = Nag_TRUE

On entry: if options.list = Nag_TRUE the argument settings in the call to nag_opt_nlp (e04ucc) will be printed.

print_level – Nag_PrintType

Default = Nag_SolnIter

On entry: the level of results printout produced by nag_opt_nlp (e04ucc) at each major iteration. The following values are available:

- **Nag_NoPrint** No output.
- **Nag_Soln** The final solution only.
- **Nag_Iter** One line of output for each iteration.
- **Nag_Iter_Long** A longer line of output for each iteration with more information (line exceeds 80 characters).
- **Nag_Soln_Iter** The final solution and one line of output for each iteration.
- **Nag_Soln_Iter_Long** The final solution and one long line of output for each iteration (line exceeds 80 characters).
- **Nag_Soln_Iter_Const** As Nag_Soln_Iter_Long with the objective function, the values of the variables, the Euclidean norm of the nonlinear constraint violations, the nonlinear constraint values, c, and the linear constraint values A_L x also printed at each iteration.
- **Nag_Soln_Iter_Full** As Nag_Soln_Iter_Const with the diagonal elements of the upper triangular matrix T associated with the TQ factorization (5) of the QP working set, and the diagonal elements of R, the triangular factor of the transformed and re-ordered Hessian (6).

Details of each level of results printout are described in Section 12.3.

Constraint: options.print_level = Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter, Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full.

minor_print_level – Nag_PrintType

Default = Nag_NoPrint

On entry: the level of results printout produced by the minor iterations of nag_opt_nlp (e04ucc) (i.e., the iterations of the QP subproblem). The following values are available:
Nag_NoPrint No output.
Nag_Soln The final solution only.
Nag_Iter One line of output for each iteration.
Nag_Iter_Long A longer line of output for each iteration with more information (line exceeds 80 characters).
Nag_Soln_Iter The final solution and one line of output for each iteration.
Nag_Soln_Iter_Long The final solution and one long line of output for each iteration (line exceeds 80 characters).
Nag_Soln_Iter(Const As Nag_Soln_Iter_Long with the Lagrange multipliers, the variables x, the constraint values A_Lx and the constraint status also printed at each iteration.
Nag_Soln_Iter_Full As Nag_Soln_Iter_Const with the diagonal elements of the upper triangular matrix T associated with the TQ factorization (4) of the working set, and the diagonal elements of the upper triangular matrix R printed at each iteration.

Details of each level of results printout are described in Section 12 in nag_opt_lin_lsq (e04ncc).

(\texttt{options.minor_print_level} in the present function is equivalent to \texttt{options.print_level}.)

\textbf{Constraint:} \texttt{options.minor_print_level} = Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter, Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full.

\texttt{outfile} – const char[80] Default = stdout

\textit{On entry:} the name of the file to which results should be printed. If \texttt{options.outfile[0] = \^\textbackslash 0} then the stdout stream is used.

\texttt{print_fun} – pointer to function Default = NULL

\textit{On entry:} printing function defined by you; the prototype of \texttt{options.print_fun} is

$$
\text{void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm)};
$$

See Section 12.3.1 for further details.

\texttt{obj_deriv} – NagBoolean Default = Nag_TRUE

\textit{On entry:} this argument indicates whether you have provided all the derivatives of the objective function in \texttt{objfun}. If none or only some of the derivatives are being supplied by \texttt{objfun} then \texttt{options.obj_deriv} should be set to Nag_FALSE.

Whenever possible you should supply all derivatives, since nag_opt_nlp (e04ucc) is more reliable and will usually be more efficient when all derivatives are exact.

If \texttt{options.obj_deriv} = Nag_FALSE, nag_opt_nlp (e04ucc) will approximate the unspecified components of the objective gradient, using finite differences. The computation of finite difference approximations usually increases the total run-time, since a call to \texttt{objfun} is required for each unspecified element. Furthermore, less accuracy can be attained in the solution (see Chapter 8 of Gill et al. (1986b), for a discussion of limiting accuracy).

At times, central differences are used rather than forward differences, in which case twice as many calls to \texttt{objfun} are needed. (The switch to central differences is not under your control.)

\texttt{con_deriv} – NagBoolean Default = Nag_TRUE

\textit{On entry:} this argument indicates whether you have provided all derivatives for the constraint Jacobian in \texttt{confun}. If none or only some of the derivatives are being supplied by \texttt{confun} then \texttt{options.con_deriv} should be set to Nag_FALSE.

Whenever possible you should supply all derivatives, since nag_opt_nlp (e04ucc) is more reliable and will usually be more efficient when all derivatives are exact.

If \texttt{options.con_deriv} = Nag_FALSE, nag_opt_nlp (e04ucc) will approximate unspecified elements of the Jacobian. One call to \texttt{confun} is needed for each variable for which partial derivatives are not available.
For example, if the constraint Jacobian has the form
\[
\begin{pmatrix}
 * & * & * & *
 *
 * & ? & ? & *
 *
 * & ? & * & *
 *

data where ‘*’ indicates a provided element and ‘?’ indicates an unspecified element, nag_opt_nlp (e04ucc) will call confun twice: once to estimate the missing element in column 2, and again to estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require no calls to confun.)

At times, central differences are used rather than forward differences, in which case twice as many calls to confun are needed. (The switch to central differences is not under your control.)

\textbf{verify} _\textbf{grad} – Nag_GradChk Default = Nag_SimpleCheck

\textit{On entry:} specifies the level of derivative checking to be performed by nag_opt_nlp (e04ucc) on the gradient elements computed by objfun and confun.

The following values are available:

- Nag_NoCheck: No derivative checking is performed.
- Nag_SimpleCheck: Perform a simple check of both the objective and constraint gradients.
- Nag_CheckObj: Perform a component check of the objective gradient elements.
- Nag_CheckCon: Perform a component check of the constraint gradient elements.
- Nag_CheckObjCon: Perform a component check of both the objective and constraint gradient elements.
- Nag_XSimpleCheck: Perform a simple check of both the objective and constraint gradients at the initial value of \textbf{x} specified in \textbf{x}.
- Nag_XCheckObj: Perform a component check of the objective gradient elements at the initial value of \textbf{x} specified in \textbf{x}.
- Nag_XCheckCon: Perform a component check of the constraint gradient elements at the initial value of \textbf{x} specified in \textbf{x}.
- Nag_XCheckObjCon: Perform a component check of both the objective and constraint gradient elements at the initial value of \textbf{x} specified in \textbf{x}.

If \texttt{options.verify_grad} = Nag_SimpleCheck or Nag_XSimpleCheck then a simple ‘cheap’ test is performed, which requires only one call to objfun and one call to confun. If \texttt{options.verify_grad} = Nag_CheckObj, Nag_CheckCon or Nag_CheckObjCon then a more reliable (but more expensive) test will be made on individual gradient components. This component check will be made in the range specified by the optional arguments \texttt{options.obj_check_start} and \texttt{options.obj_check_stop} for the objective gradient, with default values being 1 and \textbf{n} respectively. For the constraint gradient the range is specified by \texttt{options.con_check_start} and \texttt{options.con_check_stop}, with default values being 1 and \textbf{n}.

The procedure for the derivative check is based on finding an interval that produces an acceptable estimate of the second derivative, and then using that estimate to compute an interval that should produce a reasonable forward-difference approximation. The gradient element is then compared with the difference approximation. (The method of finite difference interval estimation is based on Gill et al. (1983).) The result of the test is printed out by nag_opt_nlp (e04ucc) if optional argument \texttt{options.print_deriv} ≠ Nag_D_NoPrint.

\textit{Constraint:} \texttt{options.verify_grad} = Nag_NoCheck, Nag_SimpleCheck, Nag_CheckObj, Nag_CheckCon, Nag_CheckObjCon, Nag_XSimpleCheck, Nag_XCheckObj, Nag_XCheckCon or Nag_XCheckObjCon.

\textbf{print_deriv} – Nag_D_PrintType Default = Nag_D_Full

\textit{On entry:} controls whether the results of any derivative checking are printed out (see optional argument \texttt{options.verify_grad}).
If a component derivative check has been carried out, then full details will be printed if
\[\text{options.print_deriv} = \text{Nag_D_Full}. \]
For a printout summarising the results of a component derivative check set
\[\text{options.print_deriv} = \text{Nag_D_Sum}. \]
If only a simple derivative check is requested then
\[\text{Nag_D_Sum} \] and \[\text{Nag_D_Full} \] will give the same level of output. To prevent any printout from a
derivative check set \[\text{options.print_deriv} = \text{Nag_D_NoPrint}. \]

Constraint: \[\text{options.print_deriv} = \text{Nag_D_NoPrint}, \text{Nag_D_Sum} \text{ or Nag_D_Full}. \]

\[
\begin{align*}
\text{obj_check_start} & - \text{Integer} & \text{Default} = 1 \\
\text{obj_check_stop} & - \text{Integer} & \text{Default} = n
\end{align*}
\]
These options take effect only when \[\text{options.verify_grad} = \text{Nag_CheckObj}, \text{Nag_CheckObjCon}, \text{Nag_XCheckObj} \text{ or Nag_XCheckObjCon}. \]

On entry: they may be used to control the verification of gradient elements computed by the function \text{objfun}. For example, if the first 30 elements appeared to be correct in an earlier run, so that only
element 31 remains questionable, it is reasonable to specify \[\text{options.obj_check_start} = 31. \]
If the first 30 variables appear linearly in the objective, so that the corresponding gradient elements are constant, the
above choice would also be appropriate.

Constraint: \[1 \leq \text{options.obj_check_start} \leq \text{options.obj_check_stop} \leq n. \]

\[
\begin{align*}
\text{con_check_start} & - \text{Integer} & \text{Default} = 1 \\
\text{con_check_stop} & - \text{Integer} & \text{Default} = n
\end{align*}
\]
These options take effect only when \[\text{options.verify_grad} = \text{Nag_CheckCon}, \text{Nag_CheckObjCon}, \text{Nag_XCheckCon} \text{ or Nag_XCheckObjCon}. \]

On entry: these arguments may be used to control the verification of the Jacobian elements computed by
the function \text{confun}. For example, if the first 30 columns of the constraint Jacobian appeared to be
correct in an earlier run, so that only column 31 remains questionable, it is reasonable to specify
\[\text{options.con_check_start} = 31. \]

Constraint: \[1 \leq \text{options.con_check_start} \leq \text{options.con_check_stop} \leq n. \]

\[
\begin{align*}
\text{f_diff_int} & - \text{double} & \text{Default} = \text{computed automatically}
\end{align*}
\]

On entry: defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional argument
\text{options.verify_grad}).

(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.

In general, using the notation \(r = \text{options.f_diff_int} \), a derivative with respect to the \(j \)th variable is
approximated using the interval \(\delta_j = r(1 + |\hat{x}_j|) \), with \(\hat{x} \) the first point feasible with respect to
the bounds and linear constraints. If the functions are well scaled, the resulting derivative approximation
should be accurate to \(O(r) \). See Gill et al. (1981) for a discussion of the accuracy in finite difference
approximations.

If you do not specify a difference interval, a finite difference interval will be computed automatically for
each variable by a procedure that requires up to six calls of \text{confun} and \text{objfun} for each element. This
option is recommended if the function is badly scaled or you wish to have \text{nag_opt_nlp} (e04ucc)
determine constant elements in the objective and constraint gradients (see the descriptions of \text{confun} and
\text{objfun} in Section 5).

Constraint: \(\epsilon \leq \text{options.f_diff_int} < 1.0. \)

\[
\begin{align*}
\text{c_diff_int} & - \text{double} & \text{Default} = \text{computed automatically}
\end{align*}
\]

On entry: if the algorithm switches to central differences because the forward-difference approximation is
not sufficiently accurate the value of \[\text{options.c_diff_int} \] is used as the difference interval for every
element of \(x \). The switch to central differences is indicated by \(C \) at the end of each line of intermediate
printout produced by the major iterations (see Section 5.1). The use of finite differences is discussed under the option options.f_diff_int.

Constraint: $\epsilon \leq \text{options.c_diff_int} < 1.0$.

max_iter – Integer
Default = $\max(50, 3(n + \text{nclin}) + 10\text{ncnlin})$

On entry: the maximum number of major iterations allowed before termination.

Constraint: **options.max_iter** ≥ 0.

minor_max_iter – Integer
Default = $\max(50, 3(n + \text{nclin} + \text{ncnlin}))$

On entry: the maximum number of iterations for finding a feasible point with respect to the bounds and linear constraints (if any). The value also specifies the maximum number of minor iterations for the optimality phase of each QP subproblem.

Constraint: **options.minor_max_iter** ≥ 0.

f_prec – double
Default = $\epsilon^{0.9}$

On entry: this argument defines ϵ_r, which is intended to be a measure of the accuracy with which the problem functions $F(x)$ and $c(x)$ can be computed.

The value of ϵ_r should reflect the relative precision of $1 + |F(x)|$; i.e., ϵ_r acts as a relative precision when $|F|$ is large, and as an absolute precision when $|F|$ is small. For example, if $F(x)$ is typically of order 1000 and the first six significant digits are known to be correct, an appropriate value for ϵ_r would be 10^{-6}. In contrast, if $F(x)$ is typically of order 10^{-4} and the first six significant digits are known to be correct, an appropriate value for ϵ_r would be 10^{-10}. The choice of ϵ_r can be quite complicated for badly scaled problems; see Chapter 8 of Gill et al. (1981), for a discussion of scaling techniques. The default value is appropriate for most simple functions that are computed with full accuracy. However, when the accuracy of the computed function values is known to be significantly worse than full precision, the value of ϵ_r should be large enough so that nag_opt_nlp(e04ucc) will not attempt to distinguish between function values that differ by less than the error inherent in the calculation.

Constraint: $\epsilon \leq \text{options.f_prec} < 1.0$.

optim_tol – double
Default = $\text{options.f_prec}^{0.8}$

On entry: specifies the accuracy to which you wish the final iterate to approximate a solution of the problem. Broadly speaking, **options.optim_tol** indicates the number of correct figures desired in the objective function at the solution. For example, if **options.optim_tol** is 10^{-6} and nag_opt_nlp(e04ucc) terminates successfully, the final value of F should have approximately six correct figures.

nag_opt_nlp(e04ucc) will terminate successfully if the iterative sequence of x-values is judged to have converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 11.1). The sequence of iterates is considered to have converged at x if

$$\alpha \|p\| \leq \sqrt{r}(1 + \|x\|),$$

where p is the search direction and α the step length from (3), and r is the value of **options.optim_tol**. An iterate is considered to satisfy the first-order conditions for a minimum if

$$\|Z^T g_{FR}\| \leq \sqrt{r}(1 + \max(1 + |F(x)|, \|g_{FR}\|))$$

and

$$|res_j| \leq ftol \text{ for all } j,$$

where $Z^T g_{FR}$ is the projected gradient (see Section 11.1), g_{FR} is the gradient of $F(x)$ with respect to the free variables, res_j is the violation of the jth active nonlinear constraint, and $ftol$ the value of the optional argument **options.nonlin_feas_tol**.

Constraint: $\text{options.f_prec} \leq \text{options.optim_tol} < 1.0$.

e04ucc.30 Mark 25
lin_feas_tol – double

On entry: defines the maximum acceptable *absolute* violations in the linear constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not exceed `options.lin_feas_tol`

On entry to `nag_opt_nlp` (e04ucc), an iterative procedure is executed in order to find a point that satisfies the linear constraints and bounds on the variables to within the tolerance specified by `options.lin_feas_tol`. All subsequent iterates will satisfy the constraints to within the same tolerance (unless `options.lin_feas_tol` is comparable to the finite difference interval).

This tolerance should reflect the precision of the linear constraints. For example, if the variables and the coefficients in the linear constraints are of order unity, and the latter are correct to about 6 decimal digits, it would be appropriate to specify `options.lin_feas_tol` as 10^{-6}.

Constraint: $\epsilon \leq \text{options.lin_feas_tol} < 1.0$.

nonlin_feas_tol – double

The default is $\epsilon^{0.33}$ if `options.con_deriv = Nag_FALSE`, and $\sqrt{\epsilon}$ otherwise.

On entry: defines the maximum acceptable violations in the nonlinear constraints at a ‘feasible’ point; i.e., a nonlinear constraint is considered satisfied if its violation does not exceed `options.nonlin_feas_tol`

The tolerance defines the largest constraint violation that is acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final iterate, the value of `options.nonlin_feas_tol` acts as a partial termination criteria for the iterative sequence generated by `nag_opt_nlp` (e04ucc) (see the discussion of `options.optim_tol`).

This tolerance should reflect the precision of the nonlinear constraint functions calculated by `confun`.

Constraint: $\epsilon \leq \text{options.nonlin_feas_tol} < 1.0$.

linesearch_tol – double

On entry: controls the accuracy with which the step α taken during each iteration approximates a minimum of the merit function along the search direction (the smaller the value of `options.linesearch_tol`, the more accurate the line search). The default value requests an inaccurate search, and is appropriate for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if a substantial number of derivatives are unspecified.

Constraint: $0.0 \leq \text{options.linesearch_tol} < 1.0$.

step_limit – double

On entry: specifies the maximum change in the variables at the first step of the line search. In some cases, such as $F(x) = ae^{bx}$ or $F(x) = ax^b$, even a moderate change in the elements of x can lead to floating-point overflow. The argument `options.step_limit` is therefore used to encourage evaluation of the problem functions at meaningful points. Given any major iterate x, the first point \bar{x} at which F and c are evaluated during the line search is restricted so that

$$||\bar{x} - x||_2 \leq r(1 + ||x||_2),$$

where r is the value of `options.step_limit`.

The line search may go on and evaluate F and c at points further from x if this will result in a lower value of the merit function. In this case, the character L is printed at the end of each line of output produced by the major iterations (see Section 5.1). If L is printed for most of the iterations, `options.step_limit` should be set to a larger value.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear functions at wild values. The default value of `options.step_limit = 2.0` should not affect progress on well-behaved functions, but values such as 0.1 or 0.01 may be helpful when rapidly varying functions...
are present. If a small value of *options.step_limit* is selected, a good starting point may be required. An important application is to the class of nonlinear least squares problems.

Constraint: *(options.step_limit)* > 0.0.

crash_tol – double

On entry: *(options.crash_tol)* is used during a ‘cold start’ when *nag_opt_nlp* (e04ucc) selects an initial working set *(options.start = Nag_Cold)*. The initial working set will include (if possible) bounds or general inequality constraints that lie within *(options.crash_tol)* of their bounds. In particular, a constraint of the form \(a_j^T x \geq l\) will be included in the initial working set if \(\left| a_j^T x - l \right| \leq \text{options.crash_tol} \times (1 + |l|)\).

Constraint: 0.0 ≤ *(options.crash_tol)* ≤ 1.0.

inf_bound – double

On entry: *(options.inf_bound)* defines the ‘infinite’ bound in the definition of the problem constraints. Any upper bound greater than or equal to *(options.inf_bound)* will be regarded as \(+\infty\) (and similarly any lower bound less than or equal to \(-\text{options.inf_bound}\) will be regarded as \(-\infty\)).

Constraint: *(options.inf_bound)* > 0.0.

inf_step – double

On entry: *(options.inf_step)* specifies the magnitude of the change in variables that will be considered a step to an unbounded solution. If the change in \(x\) during an iteration would exceed the value of *(options.inf_step)*, the objective function is considered to be unbounded below in the feasible region.

Constraint: *(options.inf_step)* > 0.0.

conf – double

On entry: *(ncnlin)* values of memory will be automatically allocated by *nag_opt_nlp* (e04ucc) and this is the recommended method of use of *(conf)*. However you may supply memory from the calling program.

On exit: if *(ncnlin)* > 0, *(conf)[i-1]* contains the value of the \(i\)th nonlinear constraint function \(c_i\) at the final iterate.

If *(ncnlin) = 0* then *(conf)* will not be referenced.

conjac – double

On entry: *(ncnlin) \times n* values of memory will be automatically allocated by *nag_opt_nlp* (e04ucc) and this is the recommended method of use of *(options.conjac)*. However you may supply memory from the calling program.

On exit: if *(ncnlin)* > 0, *(conjac)[(i-1) \times n + j-1]* contains the partial derivative of the \(i\)th constraint function with respect to the \(j\)th variable, for \(i = 1, 2, \ldots, \text{ncnlin}\) and \(j = 1, 2, \ldots, n\). (See the discussion of the argument *(conjac)* under *(confun)*.)

If *(ncnlin) = 0* then *(conjac)* will not be referenced.

state – Integer

On entry: *(options.state)* need not be set if the default option of *(options.start) = Nag_Cold* is used as \(n + \text{ncnlin} + \text{ncnlin}\) values of memory will be automatically allocated by *nag_opt_nlp* (e04ucc).

If the option *(options.start) = Nag_Warm* has been chosen, *(options.state)* must point to a minimum of \(n + \text{ncnlin} + \text{ncnlin}\) elements of memory. This memory will already be available if the *(options)* structure has been used in a previous call to *nag_opt_nlp* (e04ucc) from the calling program, with *(options.start) = Nag_Cold* and the same values of \(n, \text{ncnlin}\) and \(\text{ncnlin}\). If a previous call has not been made, you must allocate sufficient memory.
When a ‘warm start’ is chosen options.state should specify the status of the bounds and linear constraints at the start of the feasibility phase. More precisely, the first \(n \) elements of options.state refer to the upper and lower bounds on the variables, the next \(n \text{cclin} \) elements refer to the general linear constraints and the following \(n \text{cnlin} \) elements refer to the nonlinear constraints. Possible values for \(\text{options.state}[j] \) are as follows:

<table>
<thead>
<tr>
<th>(\text{options.state}[j])</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The corresponding constraint is not in the initial QP working set.</td>
</tr>
<tr>
<td>1</td>
<td>This inequality constraint should be in the initial working set at its lower bound.</td>
</tr>
<tr>
<td>2</td>
<td>This inequality constraint should be in the initial working set at its upper bound.</td>
</tr>
<tr>
<td>3</td>
<td>This equality constraint should be in the initial working set. This value must only be specified if (\text{bl}[j] = \text{bu}[j]).</td>
</tr>
</tbody>
</table>

The values \(-2, -1\) and 4 are also acceptable but will be reset to zero by the function, as will any elements which are set to 3 when the corresponding elements of \(\text{bl} \) and \(\text{bu} \) are not equal. If nag_opt_nlp (e04ucc) has been called previously with the same values of \(n, \text{ncclin} \) and \(\text{ncnlin} \), then options.state already contains satisfactory information. (See also the description of the optional argument options.start.) The function also adjusts (if necessary) the values supplied in \(x \) to be consistent with the values supplied in \(\text{options.state} \).

Constraint: \(-2 \leq \text{options.state}[j - 1] \leq 4\), for \(j = 1, 2, \ldots, n + \text{ncolin} + \text{ncnlin} \).

On exit: the status of the constraints in the QP working set at the point returned in \(x \). The significance of each possible value of \(\text{options.state}[j] \) is as follows:

<table>
<thead>
<tr>
<th>(\text{options.state}[j])</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-2)</td>
<td>The constraint violates its lower bound by more than the appropriate feasibility tolerance (see the options (\text{options.lin feas tol}) and (\text{options.nonlin feas tol})). This value can occur only when no feasible point can be found for a QP subproblem.</td>
</tr>
<tr>
<td>(-1)</td>
<td>The constraint violates its upper bound by more than the appropriate feasibility tolerance (see the options (\text{options.lin feas tol}) and (\text{options.nonlin feas tol})). This value can occur only when no feasible point can be found for a QP subproblem.</td>
</tr>
<tr>
<td>0</td>
<td>The constraint is satisfied to within the feasibility tolerance, but is not in the QP working set.</td>
</tr>
<tr>
<td>1</td>
<td>This inequality constraint is included in the QP working set at its lower bound.</td>
</tr>
<tr>
<td>2</td>
<td>This inequality constraint is included in the QP working set at its upper bound.</td>
</tr>
<tr>
<td>3</td>
<td>This constraint is included in the working set as an equality. This value of (\text{options.state}) can occur only when (\text{bl}[j] = \text{bu}[j]).</td>
</tr>
</tbody>
</table>

lambda – double

Default = \(n + \text{ncolin} + \text{ncnlin} \)

On entry: options.lambda need not be set if the default option of options.start = Nag_Cold is used as \(n + \text{ncolin} + \text{ncnlin} \) values of memory will be automatically allocated by nag_opt_nlp (e04ucc).

If the option options.start = Nag_Warm has been chosen, options.lambda must point to a minimum of \(n + \text{ncolin} + \text{ncnlin} \) elements of memory. This memory will already be available if the options structure has been used in a previous call to nag_opt_nlp (e04ucc) from the calling program, with options.start = Nag_Cold and the same values of \(n, \text{nolin} \) and \(\text{ncnlin} \). If a previous call has not been made, you must allocate sufficient memory.

When a ‘warm start’ is chosen options.lambda\([j - 1]\) must contain a multiplier estimate for each nonlinear constraint with a sign that matches the status of the constraint specified by options.state, for \(j = n + \text{ncolin} + 1, n + \text{ncolin} + 2, \ldots, n + \text{ncolin} + \text{ncnlin} \). The remaining elements need not be set.

Note that if the \(j \)th constraint is defined as ‘inactive’ by the initial value of the options.state array (i.e., options.state\([j - 1]\) = 0), options.lambda\([j - 1]\) should be zero; if the \(j \)th constraint is an inequality active at its lower bound (i.e., options.state\([j - 1]\) = 1), options.lambda\([j - 1]\) should be non-negative; if the \(j \)th constraint is an inequality active at its upper bound (i.e., options.state\([j - 1]\) = 2), options.lambda\([j - 1]\) should be non-positive. If necessary, the function will modify options.lambda to match these rules.
On exit: the values of the Lagrange multipliers from the last QP subproblem. `options.lambda[j-1]` should be non-negative if `options.state[j-1] = 1` and non-positive if `options.state[j-1] = 2`.

`h` - double

On entry: `options.h` need not be set if the default option of `options.start = Nag_Cold` is used, as `n x n` values of the memory will be automatically allocated by nag_opt_nlp (e04ucc).

If the option `options.start` has been chosen, `options.h` must point to a minimum of `n x n` elements of memory. This memory will already be available if the calling program has used the `options` structure in a previous call to nag_opt_nlp (e04ucc) with `options.start` and the same value of `n`. If a previous call has not been made you must allocate sufficient memory.

When `options.start = Nag_Warm` is chosen, the memory pointed to by `options.h` must contain the upper triangular Cholesky factor `R` of the initial approximation of the Hessian of the Lagrangian function, with the variables in the natural order. Elements not in the upper triangular part of `R` are assumed to be zero and need not be assigned. If a previous call has been made, with `options.hessian = Nag_TRUE`, then `options.h` will already have been set correctly.

On exit: if `options.hessian = Nag_FALSE`, `options.h` contains the upper triangular Cholesky factor `R` of $Q^T H Q$, an estimate of the transformed and re-ordered Hessian of the Lagrangian at x (see (6)).

If `options.hessian = Nag_TRUE`, `options.h` contains the upper triangular Cholesky factor `R` of H, the approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

`hessian` - Nag_Boolean

On entry: controls the contents of the optional argument `options.h` on return from nag_opt_nlp (e04ucc). nag_opt_nlp (e04ucc) works exclusively with the transformed and re-ordered Hessian H_Q, and hence extra computation is required to form the Hessian itself. If `options.hessian = Nag_FALSE`, `options.h` contains the Cholesky factor of the transformed and re-ordered Hessian. If `options.hessian = Nag_TRUE`, the Cholesky factor of the approximate Hessian itself is formed and stored in `options.h`. This information is required by nag_opt_nlp (e04ucc) if the next call to nag_opt_nlp (e04ucc) will be made with optional argument `options.start = Nag_Warm`.

`iter` - Integer

On exit: the number of major iterations which have been performed in nag_opt_nlp (e04ucc).

`nf` - Integer

On exit: the number of times the objective function has been evaluated (i.e., number of calls of `objfun`). The total excludes all calls made to `objfun` for purposes of derivative checking.

12.3 Description of Printed Output

The level of printed output can be controlled with the structure members `options.list`, `options.print_deriv`, `options.print_level` and `options.minor_print_level` (see Section 12.2). If `options.list = Nag_TRUE` then the argument values to nag_opt_nlp (e04ucc) are listed, followed by the result of any derivative check if `options.print_deriv = Nag_D_Sum` or `Nag_D_Full`. The printout of results is governed by the values of `options.print_level` and `options.minor_print_level`. The default of `options.print_level = Nag_Soln_Iter` and `options.minor_print_level = Nag_NoPrint` provides a single line of output at each iteration and the final result. This section describes all of the possible levels of results printout available from nag_opt_nlp (e04ucc).

If a simple derivative check, `options.verify_grad = Nag_SimpleCheck`, is requested then a statement indicating success or failure is given. The largest error found in the constraint Jacobian is output together with the directional derivative, $g^T p$, of the objective gradient and its finite difference approximation, where p is a random vector of unit length.

When a component derivative check (see `options.verify_grad` in Section 12.2) is selected the element with the largest relative error is identified for the objective gradient and the constraint Jacobian.
If the value of `options.print_deriv = Nag_D_Full` then the following results are printed for each component:

- `x[i]` the element of `x`.
- `dx[i]` the optimal finite difference interval.
- `g[i]` or Jacobian value the gradient/Jacobian element.
- Difference approxn. the finite difference approximation.
- Itns the number of trials performed to find a suitable difference interval.

The indicator, OK or BAD?, states whether the gradient/Jacobian element and finite difference approximation are in agreement. If the derivatives are believed to be in error `nag_opt_nlp` (e04ucc) will exit with `fail.code = NE_DERIV_ERRORS`.

When `options.print_level = Nag_Iter` or `Nag_Soln_Iter` the following line of output is produced at every iteration. In all cases, the values of the quantities printed are those in effect on completion of the given iteration.

- `Maj` is the major iteration count.
- `Mnr` is the number of minor iterations required by the feasibility and optimality phases of the QP subproblem. Generally, `Mnr` will be 1 in the later iterations, since theoretical analysis predicts that the correct active set will be identified near the solution (see Section 11).

Note that `Mnr` may be greater than the optional argument `options.minor_max_iter` (default value = `max(50, 3(n + n_L + n_N))`; see Section 12.2) if some iterations are required for the feasibility phase.

- `Step` is the step taken along the computed search direction. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.
- `Merit function` is the value of the augmented Lagrangian merit function (12) at the current iterate. This function will decrease at each iteration unless it was necessary to increase the penalty arguments (see Section 11.3). As the solution is approached, Merit function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by `I` at the end of the current output line), the merit function is a large multiple of the constraint violations, weighted by the penalty arguments. During a sequence of major iterations with infeasible subproblems, the sequence of Merit Function values will decrease monotonically until either a feasible subproblem is obtained or `nag_opt_nlp` (e04ucc) terminates with `fail.code = NW_NONLIN_NOT_FEASIBLE` (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., `ncnlin = 0`), this entry contains Objective, the value of the objective function `F(x)`. The objective function will decrease monotonically to its optimal value when there are no nonlinear constraints.

- `Violtn` is the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (not printed if `ncnlin` is zero). Violtn will be approximately zero in the neighbourhood of a solution.
- `Norm Gz` is `\|Z^T g_R \|`, the Euclidean norm of the projected gradient (see Section 11.1). Norm Gz will be approximately zero in the neighbourhood of a solution.
- `Cond Hz` is a lower bound on the condition number of the projected Hessian approximation `H_Z` (`H_Z = Z^T H_R Z = R_Z^T R_Z`); see (6) and (11). The larger this number, the more difficult the problem.

The line of output may be terminated by one of the following characters:
M is printed if the quasi-Newton update was modified to ensure that the Hessian approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and constraint gradients. If the value of Step is zero, the switch to central differences was made because no lower point could be found in the line search. (In this case, the QP subproblem is re-solved with the central difference gradient and Jacobian.) If the value of Step is nonzero, central differences were computed because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see Section 11.1).

L is printed if the line search has produced a relative change in x greater than the value defined by the optional argument options.step_limit (default value = 2.0; see Section 12.2). If this output occurs frequently during later iterations of the run, options.step_limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal condition estimator of R indicates that the approximate Hessian is badly conditioned, the approximate Hessian is refactorized using column interchanges. If necessary, R is modified so that its diagonal condition estimator is bounded.

If options.print_level = Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full the line of printout at every iteration is extended to give the following additional information. (Note this longer line extends over more than 80 characters.)

Nfun is the cumulative number of evaluations of the objective function needed for the line search. Evaluations needed for the estimation of the gradients by finite differences are not included. Nfun is printed as a guide to the amount of work required for the linesearch.

Nz is the number of columns of Z (see Section 11.1). The value of Nz is the number of variables minus the number of constraints in the predicted active set; i.e., $Nz = n - (Bnd + Lin + Nln)$.

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted active set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if ncnl in is zero).

Penalty is the Euclidean norm of the vector of penalty arguments used in the augmented Lagrangian merit function (not printed if ncnl in is zero).

Norm Gf is the Euclidean norm of g_{FR}, the gradient of the objective function with respect to the free variables.

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond T is a lower bound on the condition number of the matrix of predicted active constraints.

Conv is a three-letter indication of the status of the three convergence tests (16) – (18) defined in the description of the optional argument options.optim_tol in Section 12.2. Each letter is T if the test is satisfied, and F otherwise. The three tests indicate whether:

(i) the sequence of iterates has converged;

(ii) the projected gradient (Norm Gz) is sufficiently small; and

(iii) the norm of the residuals of constraints in the predicted active set (Violtn) is small enough.

If any of these indicators is F when nag_opt_nlp (e04ucc) terminates with the error indicator fail.code = NE_NOERROR, you should check the solution carefully.
When \texttt{options.print_level = Nag_Soln_Iter_Const} or \texttt{Nag_Soln_Iter_Full} more detailed results are given at each iteration. If \texttt{options.print_level = Nag_Soln_Iter_Const} these additional values are: the value of \(x \) currently held in \(x \), the current value of the objective function; the Euclidean norm of nonlinear constraint violations; the values of the nonlinear constraints (the vector \(c \)); and the values of the linear constraints, (the vector \(A_I x \)).

If \texttt{options.print_level = Nag_Soln_Iter_Full} then the diagonal elements of the matrix \(T \) associated with the \(TQ \) factorization (5) of the QP working set and the diagonal elements of \(R \), the triangular factor of the transformed and re-ordered Hessian (6) (see Section 11.1) are also output at each iteration.

When \texttt{options.print_level = Nag_Soln}, \texttt{Nag_Soln_Iter}, \texttt{Nag_Soln_Iter_Long}, \texttt{Nag_Soln_Iter_Const} or \texttt{Nag_Soln_Iter_Full} the final printout from \texttt{nag_opt_nlp (e04ucc)} includes a listing of the status of every variable and constraint. The following describes the printout for each variable.

\textbf{Varbl} gives the name (\(V \)) and index \(j \), for \(j = 1, 2, \ldots, n \) of the variable.

\textbf{State} gives the state of the variable (\(\text{FR} \) if neither bound is in the active set, \(\text{EQ} \) if a fixed variable, \(\text{LL} \) if on its lower bound, \(\text{UL} \) if on its upper bound). If Value lies outside the upper or lower bounds by more than the feasibility tolerances specified by the optional arguments \texttt{options.lin_feas_tol} and \texttt{options.nonlin feas_tol} (see Section 12.2), \texttt{State} will be \(++ \) or \(- - \) respectively.

A key is sometimes printed before \texttt{State} to give some additional information about the state of a variable.

\begin{itemize}
 \item \textbf{A} Alternative optimum possible. The variable is active at one of its bounds, but its Lagrange Multiplier is essentially zero. This means that if the variable were allowed to start moving away from its bound, there would be no change to the objective function. The values of the other free variables \textit{might} change, giving a genuine alternative solution. However, if there are any degenerate variables (labelled D), the actual change might prove to be zero, since one of them could encounter a bound immediately. In either case, the values of the Lagrange multipliers might also change.
 \item \textbf{D} Degenerate. The variable is free, but it is equal to (or very close to) one of its bounds.
 \item \textbf{I} Infeasible. The variable is currently violating one of its bounds by more than \texttt{options.lin feas_tol}.
\end{itemize}

\textbf{Value} is the value of the variable at the final iteration.

\textbf{Lower bound} is the lower bound specified for the variable \(j \). (\texttt{None} indicates that \(\texttt{bl}[j - 1] \leq \texttt{options.inf_bound} \), where \texttt{options.inf_bound} is the optional argument.)

\textbf{Upper bound} is the upper bound specified for the variable \(j \). (\texttt{None} indicates that \(\texttt{bu}[j - 1] \geq \texttt{options.inf_bound} \), where \texttt{options.inf_bound} is the optional argument.)

\textbf{Lagr Mult} is the value of the Lagrange multiplier for the associated bound constraint. This will be zero if \texttt{State} is \(\text{FR} \) unless \(\texttt{bl}[j - 1] \leq -\texttt{options.inf_bound} \) and \(\texttt{bu}[j - 1] \geq \texttt{options.inf_bound} \), in which case the entry will be blank. If \(x \) is optimal, the multiplier should be non-negative if \texttt{State} is \(\text{LL} \), and non-positive if \texttt{State} is \(\text{UL} \).

\textbf{Residual} is the difference between the variable \texttt{Value} and the nearer of its (finite) bounds \(\texttt{bl}[j - 1] \) and \(\texttt{bu}[j - 1] \). A blank entry indicates that the associated variable is not bounded (i.e., \(\texttt{bl}[j - 1] \leq -\texttt{options.inf_bound} \) and \(\texttt{bu}[j - 1] \geq \texttt{options.inf_bound} \)).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for variables, with ‘variable’ replaced by ‘constraint’, \(\texttt{bl}[j - 1] \) and \(\texttt{bu}[j - 1] \) are replaced by \(\texttt{bl}[n + j - 1] \) and \(\texttt{bu}[n + j - 1] \) respectively, and with the following changes in the heading:

\textbf{L Con} gives the name (\(L \)) and index \(j \), for \(j = 1, 2, \ldots, n_L \) of the linear constraint.

\textbf{N Con} gives the name (\(N \)) and index \((j - n_L) \), for \(j = n_L + 1, n_L + 2, \ldots, n_L + n_N \) of the nonlinear constraint.
The I key in the State column is printed for general linear constraints which currently violate one of their bounds by more than options.lin_feas_tol and for nonlinear constraints which violate one of their bounds by more than options.nonlin_feas_tol.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this precision.

For the output governed by options.minor_print_level, you are referred to the documentation for nag_opt_lin_lsq (e04ncc). This option is equivalent to options.print_level.

If options.print_level = Nag_NoPrint then printout will be suppressed; you can print the final solution when nag_opt_nlp (e04ucc) returns to the calling program.

12.3.1 Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by use of the options.print_fun function pointer, which has prototype

```c
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);
```

This section may be skipped if you wish to use the default printing facilities.

When a user-defined function is assigned to options.print_fun this will be called in preference to the internal print function of nag_opt_nlp (e04ucc). Calls to the user-defined function are again controlled by means of the options.print_level, options.minor_print_level and options.print_deriv members. Information is provided through st and comm, the two structure arguments to options.print_fun.

If comm→it_maj_prt = Nag_TRUE then results from the last major iteration of nag_opt_nlp (e04ucc) are provided through st. Note that options.print_fun will be called with comm→it_maj_prt = Nag_TRUE only if options.print_level = Nag_Iter, Nag_Soln_Iter, Nag_Soln_Iter_Long, Nag_Soln_Iter(Const or Nag_Soln_Iter_Full. The following members of st are set:

- n – Integer
 The number of variables.
- nclin – Integer
 The number of linear constraints.
- ncnlin – Integer
 The number of nonlinear constraints.
- nactiv – Integer
 The total number of active elements in the current set.
- iter – Integer
 The major iteration count.
- minor_iter – Integer
 The minor iteration count for the feasibility and the optimality phases of the QP subproblem.
- step – double
 The step taken along the computed search direction.
- nfun – Integer
 The cumulative number of objective function evaluations needed for the line search.
- merit – double
 The value of the augmented Lagrangian merit function at the current iterate.
objf – double

The current value of the objective function.

norm_nlnviol – double

The Euclidean norm of nonlinear constraint violations (only available if st\(\rightarrow\)ncnlin > 0).

violtn – double

The Euclidean norm of the residuals of constraints that are violated or in the predicted active set (only available if st\(\rightarrow\)ncnlin > 0).

norm_gz – double

\(\|Z^T g_{FR}\|\), the Euclidean norm of the projected gradient.

nz – Integer

The number of columns of Z (see Section 11.1).

bnd – Integer

The number of simple bound constraints in the predicted active set.

lin – Integer

The number of general linear constraints in the predicted active set.

nln – Integer

The number of nonlinear constraints in the predicted active set (only available if st\(\rightarrow\)ncnlin > 0).

penalty – double

The Euclidean norm of the vector of penalty arguments used in the augmented Lagrangian merit function (only available if st\(\rightarrow\)ncnlin > 0).

norm_gf – double

The Euclidean norm of \(g_{FR}\), the gradient of the objective function with respect to the free variables.

cond_h – double

A lower bound on the condition number of the Hessian approximation \(H\).

cond_hz – double

A lower bound on the condition number of the projected Hessian approximation \(H_Z\).

cond_t – double

A lower bound on the condition number of the matrix of predicted active constraints.

iter_conv – Nag_Boolean

Nag_TRUE if the sequence of iterates has converged, i.e., convergence condition (16) (see the description of options.optim.tol) is satisfied.

norm_gz_small – Nag_Boolean

Nag_TRUE if the projected gradient is sufficiently small, i.e., convergence condition (17) (see the description of options.optim.tol) is satisfied.

violtn_small – Nag_Boolean

Nag_TRUE if the violations of the nonlinear constraints are sufficiently small, i.e., convergence condition (18) (see the description of options.optim.tol) is satisfied.

update_modified – Nag_Boolean

Nag_TRUE if the quasi-Newton update was modified to ensure that the Hessian is positive definite.
qp_not_feasible – Nag_Boolean

Nag_TRUE if the QP subproblem has no feasible point.

c_diff – Nag_Boolean

Nag_TRUE if central differences were used to compute the unspecified objective and constraint gradients.

step_limit_exceeded – Nag_Boolean

Nag_TRUE if the line search produced a relative change in x greater than the value defined by the optional argument options.step_limit.

refactor – Nag_Boolean

Nag_TRUE if the approximate Hessian has been refactorized.

x – double *

Contains the components $x[j-1]$ of the current point x, for $j = 1, 2, \ldots, st->n$.

state – Integer *

Contains the status of the $st->n$ variables, $st->nclin$ linear, and $st->ncnlin$ nonlinear constraints (if any). See Section 12.2 for a description of the possible status values.

ax – double *

If $st->nclin > 0$, $st->ax[j-1]$ contains the current value of the jth linear constraint, for $j = 1, 2, \ldots, st->nclin$.

cx – double *

If $st->ncnlin > 0$, $st->cx[j-1]$ contains the current value of nonlinear constraint c_j, for $j = 1, 2, \ldots, st->ncnlin$.

diagT – double *

If $st->nactiv > 0$, the $st->nactiv$ elements of the diagonal of the matrix T.

diagR – double *

Contains the $st->n$ elements of the diagonal of the upper triangular matrix R.

If comm->solqp prt = Nag_TRUE then the final result from nag_opt_nlp (e04ucc) is provided through st. Note that options.print_fun will be called with comm->solqp prt = Nag_TRUE only if options.print_level = Nag_Soln, Nag_Soln_Iter, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full. The following members of st are set:

iter – Integer

The number of iterations performed.

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.

ncnlin – Integer

The number of nonlinear constraints.

x – double *

Contains the components $x[j-1]$ of the final point x, for $j = 1, 2, \ldots, st->n$.

state – Integer *

Contains the status of the $st->n$ variables, $st->nclin$ linear, and $st->ncnlin$ nonlinear constraints (if any). See Section 12.2 for a description of the possible status values.
ax – double *
 If st->nclin > 0, st->ax[j - 1] contains the final value of the jth linear constraint, for
 j = 1, 2, ..., st->nclin.

cx – double *
 If st->ncnlin > 0, st->cx[j - 1] contains the final value of nonlinear constraint cj for
 j = 1, 2, ..., st->ncnlin.

bl – double *
 Contains the st->n + st->nclin + st->ncnlin lower bounds on the variables.

bu – double *
 Contains the st->n + st->nclin + st->ncnlin upper bounds on the variables.

lambda – double *
 Contains the st->n + st->nclin + st->ncnlin final values of the Lagrange multipliers.

If comm->gprt = Nag_TRUE then the results from derivative checking are provided through st. Note that
options.print_fun will be called with comm->gprt only if options.print_deriv = Nag_D_Sum or
Nag_D_Full. The following members of st are set:

n – Integer
 The number of variables.

ncnlin – Integer
 The number of nonlinear constraints.

x – double *
 Contains the components x[j - 1] of the initial point x0, for j = 1, 2, ..., st->n.

g – double *
 Contains the components g[j - 1] of the gradient vector g(x) = (\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, ..., \frac{\partial F}{\partial x_n})^T at the
 initial point x0, for j = 1, 2, ..., st->n.

conjac – double *
 Contains the elements of the Jacobian matrix of nonlinear constraints at the initial point x0 \frac{\partial f_i}{\partial x_j}
 held at location conjac[(i - 1) \times st->n + j - 1], for i = 1, 2, ..., st->ncnlin and
 j = 1, 2, ..., st->n).

In this case details of the derivative check performed by nag_opt_nlp (e04ucc) are held in the following
substructure of st:

gprint – Nag_GPrintSt *
 Which in turn contains three substructures st->g_chk, st->f_sim, st->c_sim and two pointers to
 arrays of substructures, st->f_comp and st->c_comp.

 g_chk – Nag_Grad_Check_St *
 The substructure st->g_chk contains the members:

 type – Nag_GradCheck
 The type of derivative check performed by nag_opt_nlp (e04ucc). This will be the same value as in options.verify_grad.
g_error – Integer
This member will be equal to one of the error codes NE_NOERROR or
NE_DERIV_ERRORS according to whether the derivatives were found to be correct
or not.

obj_start – Integer
Specifies the gradient element at which any component check started. This value will
be equal to options.obj_check_start.

obj_stop – Integer
Specifies the gradient element at which any component check ended. This value specifies the element at which any component check of the constraint gradient ended. This value will be equal to options.obj_check_stop.

con_start – Integer
Specifies the element at which any component check of the constraint gradient started. This value will be equal to options.con_check_start.

con_stop – Integer
Specifies the element at which any component check of the constraint gradient ended. This value will be equal to options.con_check_stop.

f_sim – Nag_SimSt *
The result of a simple derivative check of the objective gradient,
st→gprint→g_chk.type = Nag_SimpleCheck, will be held in this substructure in members:
correct – Nag_Boolean
If Nag_TRUE then the objective gradient is consistent with the finite difference
approximation according to a simple check.
dir_deriv – double
The directional derivative g^Tp where p is a random vector of unit length with
elements of approximately equal magnitude.

fd_approx – double
The finite difference approximation, $(F(x + hp) − F(x))/h$, to the directional
derivative.

c_sim – Nag_SimSt *
The result of a simple derivative check of the constraint Jacobian,
st→gprint→g_chk.type = Nag_SimpleCheck, will be held in this substructure in members:
n_elements – Integer
The number of columns of the constraint Jacobian for which a simple check has been
carried out, i.e., those columns which do not contain unknown elements.
correct – Nag_Boolean
If Nag_TRUE then the Jacobian is consistent with the finite difference approximation
according to a simple check.

max_error – double
The maximum error found between the norm of a constraint gradient and its finite
difference approximation.

max_constraint – Integer
The constraint gradient which has the maximum error between its norm and its finite
difference approximation.
The results of a requested component derivative check of the objective gradient, \(g_{\text{print}} \rightarrow g_{\text{chk}} \text{.type} = \text{Nag_CheckObj or Nag_CheckObjCon}, \) will be held in the array of \(n \) substructures of type Nag_CompSt pointed to by \(g_{\text{print}} \rightarrow f_{\text{comp}} \). The procedure for the derivative check is based on finding an interval that produces an acceptable estimate of the second derivative, and then using that estimate to compute an interval that should produce a reasonable forward-difference approximation. The gradient element is then compared with the difference approximation. (The method of finite difference interval estimation is based on Gill \textit{et al.} (1983).)

correct – Nag_Boolean

If Nag_TRUE then this gradient element is consistent with its finite difference approximation.

hopt – double

The optimal finite difference interval.

gdiff – double

The finite difference approximation for this gradient component.

iter – Integer

The number of trials performed to find a suitable difference interval.

comment – char

A character string which describes the possible nature of the reason for which an estimation of the finite difference interval failed to produce a satisfactory relative condition error of the second-order difference. Possible strings are: "Constant?", "Linear or odd?", "Too nonlinear?" and "Small derivative?)."

The results of a requested component derivative check of the Jacobian of nonlinear constraint functions, \(g_{\text{print}} \rightarrow g_{\text{chk}} \text{.type} = \text{Nag_CheckCon or Nag_CheckObjCon}, \) will be held in the array of \(n_{\text{ncnlin}} \times n \) substructures of type Nag_CompSt pointed to by \(g_{\text{print}} \rightarrow c_{\text{comp}} \). The element \(g_{\text{print}} \rightarrow f_{\text{comp}}[(i - 1) \times n + j - 1] \) will hold the details of the component derivative check for Jacobian element \(i, j \), for \(i = 1, 2, \ldots, n_{\text{ncnlin}} \) and \(j = 1, 2, \ldots, n \). The procedure for the derivative check is based on finding an interval that produces an acceptable estimate of the second derivative, and then using that estimate to compute an interval that should produce a reasonable forward-difference approximation. The Jacobian element is then compared with the difference approximation. (The method of finite difference interval estimation is based on Gill \textit{et al.} (1983).)

The members of \(g_{\text{print}} \rightarrow c_{\text{comp}} \) are as for \(g_{\text{print}} \rightarrow f_{\text{comp}} \) where \(g_{\text{print}} \rightarrow f_{\text{comp}} \text{.gdiff} \) gives the difference approximation for the Jacobian element.

The relevant members of the structure \textit{comm} are:

g_prt – Nag_Boolean

Will be Nag_TRUE only when the print function is called with the result of the derivative check of \textit{objfun} and \textit{confun}.

it_maj_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with information about the current major iteration.

sol_sqp_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the details of the final solution.
it_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with information about the current minor iteration (i.e., an iteration of the current QP subproblem). See the documentation for nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

new_Lm – Nag_Boolean

Will be Nag_TRUE when the Lagrange multipliers have been updated in a QP subproblem. See the documentation for nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

sol_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the details of the solution of a QP subproblem, i.e., the solution at the end of a major iteration. See the documentation for nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

user – double

e04ucc.44 (last) Mark 25

iuser – Integer

p – Pointer

Pointers for communication of user information. If used they must be allocated memory either before entry to nag_opt_nlp (e04ucc) or during a call to objfun, confun or options.print_fun. The type Pointer will be void * with a C compiler that defines void * and char * otherwise.