NAG Library Function Document

nag_opt_bnd_lin_lsq (e04pcc)

1 Purpose
nag_opt_bnd_lin_lsq (e04pcc) solves a linear least squares problem subject to fixed lower and upper bounds on the variables.

2 Specification
#include <nag.h>
#include <nage04.h>

void nag_opt_bnd_lin_lsq (Nag_RegularizedType itype, Integer m, Integer n,
double a[], Integer pda, double b[], const double bl[],
const double bu[], double tol, double x[], double *rnorm,
Integer *nfree, double w[], Integer indx[], NagError *fail)

3 Description
Given an m by n matrix A, an n-vector l of lower bounds, an n-vector u of upper bounds, and an m-vector b, nag_opt_bnd_lin_lsq (e04pcc) computes an n-vector x that solves the least squares problem

$Ax = b$ subject to $l_i \leq x_i \leq u_i$.

A facility is provided to return a ‘regularized’ solution, which will closely approximate a minimal length solution whenever A is not of full rank. A minimal length solution is the solution to the problem which has the smallest Euclidean norm.

The algorithm works by applying orthogonal transformations to the matrix and to the right hand side to obtain within the matrix an upper triangular matrix R. In general the elements of x corresponding to the columns of R will be the candidate non-zero solutions. If a diagonal element of R is small compared to the other members of R then this is undesirable. R will be nearly singular and the equations for x thus ill-conditioned. You may specify the tolerance used to determine the relative linear dependence of a column vector for a variable moved from its initial value.

4 References

5 Arguments

1: itype – Nag_RegularizedType
 Input
 On entry: provides the choice of returning a regularized solution if the matrix is not of full rank.
 itype = Nag-Regularized
 Specifies that a regularized solution is to be computed.
 itype = Nag-NotRegularized
 Specifies that no regularization is to take place.
 Suggested value: unless there is a definite need for a minimal length solution we recommend that
 itype = Nag-NotRegularized is used.
 Constraint: itype = Nag-Regularized or Nag-NotRegularized.
On entry: \(m \), the number of linear equations.
Constraint: \(m \geq 0 \).

3: \(n \) – Integer

On entry: \(n \), the number of variables.
Constraint: \(n \geq 0 \).

4: \(a[pda \times n] \) – double

Note: the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(j-1) \times pda + i - 1] \).

On entry: the \(m \) by \(n \) matrix \(A \).
On exit: if \(\text{itype} = \text{Nag_NotRegularized} \), \(a \) contains the product matrix \(QA \), where \(Q \) is an \(m \) by \(m \) orthogonal matrix generated by \(\text{nag_opt_bnd_lin_lsq} \) (e04pcc); otherwise \(a \) is unchanged.

5: \(pda \) – Integer

On entry: the stride separating matrix row elements in the array \(a \).
Constraint: \(pda \geq m \).

6: \(b[m] \) – double

On entry: the right-hand side vector \(b \).
On exit: if \(\text{itype} = \text{Nag_NotRegularized} \), the product of \(Q \) times the original vector \(b \), where \(Q \) is as described in argument \(a \); otherwise \(b \) is unchanged.

7: \(bl[n] \) – const double
8: \(bu[n] \) – const double

On entry: \(bl[i-1] \) and \(bu[i-1] \) must specify the lower and upper bounds, \(l_i \) and \(u_i \) respectively, to be imposed on the solution vector \(x_i \).
Constraint: \(bl[i-1] \leq bu[i-1] \), for \(i = 1, 2, \ldots, n \).

9: \(tol \) – double

On entry: \(tol \) specifies a parameter used to determine the relative linear dependence of a column vector for a variable moved from its initial value. It determines the computational rank of the matrix. Increasing its value from \(\sqrt{\text{machine precision}} \) will increase the likelihood of additional elements of \(x \) being set to zero. It may be worth experimenting with increasing values of \(tol \) to determine whether the nature of the solution, \(x \), changes significantly. In practice a value of \(\sqrt{\text{machine precision}} \) is recommended (see \(\text{nag_machine_precision} \) (X02AJC)).

If on entry \(tol < \sqrt{\text{machine precision}} \), then \(\sqrt{\text{machine precision}} \) is used.
Suggested value: \(tol = 0.0 \)

10: \(x[n] \) – double

On exit: the solution vector \(x \).

11: \(rnorm \) – double *

On exit: the Euclidean norm of the residual vector \(b - Ax \).

12: \(nfree \) – Integer *

On exit: indicates the number of components of the solution vector that are not at one of the constraints.
13: w[n] – double

Output

On exit: contains the dual solution vector. The magnitude of \(w_i - 1 \) gives a measure of the improvement in the objective value if the corresponding bound were to be relaxed so that \(x_i \) could take different values.

A value of \(w[i - 1] \) equal to the special value \(-999.0\) is indicative of the matrix \(A \) not having full rank. It is only likely to occur when \(\text{itype} = \text{Nag NotRegularized} \). However a matrix may have less than full rank without \(w[i - 1] \) being set to \(-999.0\). If \(\text{itype} = \text{Nag NotRegularized} \) then the values contained in \(w \) (other than those set to \(-999.0\)) may be unreliable; the corresponding values in \(\text{indx} \) may likewise be unreliable. If you have any doubts set \(\text{itype} = \text{Nag Regularized} \).

Otherwise the values of \(w[i - 1] \) have the following meaning:

\[w_i - 1 = 0 \]

if \(x_i \) is unconstrained.

\[w_i - 1 < 0 \]

if \(x_i \) is constrained by its lower bound.

\[w_i - 1 > 0 \]

if \(x_i \) is constrained by its upper bound.

\[w_i - 1 \]

may be any value if \(l_i = u_i \).

14: indx[n] – Integer

Output

On exit: the contents of this array describe the components of the solution vector as follows:

\(\text{indx}[i - 1] \), for \(i = 1, 2, \ldots, \text{nf}\)

These elements of the solution have not hit a constraint; i.e., \(w[i - 1] = 0 \).

\(\text{indx}[i - 1] \), for \(i = \text{nf} + 1, \ldots, k \)

These elements of the solution have been constrained by either the lower or upper bound.

\(\text{indx}[i - 1] \), for \(i = k + 1, \ldots, n \)

These elements of the solution are fixed by the bounds; i.e., \(bl[i - 1] = bu[i - 1] \).

Here \(k \) is determined from \(\text{nf} \) and the number of fixed components. (Often the latter will be 0, so \(k \) will be \(n - \text{nf} \)).

15: fail – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_CONVERGENCE

The function failed to converge in \(3 \times n \) iterations. This is not expected. Please contact NAG.

NE_INT

On entry, \(m = \langle \text{value} \rangle \).

Constraint: \(m \geq 0 \).
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 0 \).

NE_INT_2

On entry, \(m = \langle \text{value} \rangle \) and \(\text{pda} = \langle \text{value} \rangle \).
Constraint: \(\text{pda} \geq m \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL_2

On entry, when \(i = \langle \text{value} \rangle \), \(\text{bl}[i-1] = \langle \text{value} \rangle \) and \(\text{bu}[i-1] = \langle \text{value} \rangle \).
Constraint: \(\text{bl}[i-1] \leq \text{bu}[i-1] \).

7 Accuracy

Orthogonal rotations are used.

8 Parallelism and Performance

\text{nag_opt_bnd_lin_lsq (e04pcc)} is not threaded by NAG in any implementation.

\text{nag_opt_bnd_lin_lsq (e04pcc)} makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

If either \(m \) or \(n \) is zero on entry then \text{nag_opt_bnd_lin_lsq (e04pcc)} sets \text{fail.code = NE_NOERROR} and simply returns without setting any other output arguments.

10 Example

The example minimizes \(\|Ax - b\|_2 \) where

\[
A = \begin{pmatrix}
0.05 & 0.05 & 0.25 & -0.25 \\
0.25 & 0.25 & 0.05 & -0.05 \\
0.35 & 0.35 & 1.75 & -1.75 \\
1.75 & 1.75 & 0.35 & -0.35 \\
0.30 & -0.30 & 0.30 & 0.30 \\
0.40 & -0.40 & 0.40 & 0.40 \\
\end{pmatrix}
\]

and

\[
b = \begin{pmatrix} 1.0 \ 2.0 \ 3.0 \ 4.0 \ 5.0 \ 6.0 \end{pmatrix}^T
\]

subject to \(1 \leq x \leq 5 \).
10.1 Program Text

/* nag_opt_bnd_lin_lsq (e04pcc) Example Program.
* Copyright 2014 Numerical Algorithms Group.
* Mark 24, 2013.
*/

#include <nag.h>
#include <stdio.h>
#include <nage04.h>

#define A(I,J) a[(J)*pda + I]

int main(void)
{
 Integer exit_status = 0;
double tol = 0.0;
 Nag_RegularizedType itype = Nag_NotRegularized;
double rnorm;
 Integer i, j, m, n, nfree, pda;
double *a = 0, *b = 0, *bl = 0, *bu = 0, *w = 0, *x = 0;
 Integer *indx = 0;
 NagError fail;

 INIT_FAIL(fail);

 printf("nag_opt_bnd_lin_lsq (e04pcc) Example Program Results\n\n");

 #ifdef _WIN32
 scanf_s("%*[\n] "); /* Skip heading in data file */
 #else
 scanf("%*[\n] "); /* Skip heading in data file */
 #endif

 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &m, &n);
 #else
 scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &m, &n);
 #endif

 if (m<0 | | n<0)
 {
 printf("Invalid m or n.\n\n");
 exit_status = 1;
 goto END;
 }

 pda = m;

 if (!!(a = NAG_ALLOC(pda*n, double)) ||
 !(b = NAG_ALLOC(m, double)) ||
 !(w = NAG_ALLOC(n, double)) ||
 !(bl = NAG_ALLOC(n, double)) ||
 !(bu = NAG_ALLOC(n, double)) ||
 !(x = NAG_ALLOC(n, double)) ||
 !(indx = NAG_ALLOC(n, Integer)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Read the matrix A */
 for (i = 0; i < m; i++)
 for (j = 0; j < n; j++)
 #ifdef _WIN32
 scanf_s("%lf", &A(i, j));
 #else
 scanf("%lf", &A(i, j));
 #endif
scanf("%lf", &A[i, j]);
#endif
#endif _WIN32
scanf_s("%*[\n] "); /* Remove remainder of line */
#else
scanf("%*[\n] "); /* Remove remainder of line */
#endif

/* Read the right-hand side vector b */
for (j = 0; j < m; j++)
#ifdef _WIN32
scanf_s("%lf", &b[j]);
#else
scanf("%lf", &b[j]);
#endif
#endif _WIN32
scanf_s("%*[\n] ");
#else
scanf("%*[\n] ");
#endif

/* Read the lower bounds vector bl */
for (i = 0; i < n; i++)
#ifdef _WIN32
scanf_s("%lf", &bl[i]);
#else
scanf("%lf", &bl[i]);
#endif
#endif _WIN32
scanf_s("%*[\n] ");
#else
scanf("%*[\n] ");
#endif

/* Read the upper bounds vector bu */
for (i = 0; i < n; i++)
#ifdef _WIN32
scanf_s("%lf", &bu[i]);
#else
scanf("%lf", &bu[i]);
#endif
#endif _WIN32
scanf_s("%*[\n] ");
#else
scanf("%*[\n] ");
#endif

/* nag_opt_bnd_lin_lsq (e04pcc). Computes the least squares solution to a set of linear equations subject to fixed upper and lower bounds on the variables */
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_opt_bnd_lin_lsq (e04pcc).\n%s\n", fail.message);
 exit_status = 2;
 goto END;
}
printf("Solution vector\n");
for (i = 0; i < n; i++)
 printf("%9.4f", x[i]);
}
printf("\n\nDual Solution\n");
for (i = 0; i < n; i++)
 printf("%9.4f", w[i]);
printf("\n\n");
printf("Residual %9.4f\n", rnorm);

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(w);
NAG_FREE(x);
NAG_FREE(indx);

return exit_status;
}

10.2 Program Data

nag_opt_bnd_lin_lsq (e04pcc) Example Program Data
6 4 : m, n
0.05 0.05 0.25 -0.25
0.25 0.25 0.05 -0.05
0.35 0.35 1.75 -1.75
1.75 1.75 0.35 -0.35
0.30 -0.30 0.30 0.30
0.40 -0.40 0.40 0.40 : matrix A
1.0 2.0 3.0 4.0 5.0 6.0 : vector b
1.0 1.0 1.0 1.0 : Lower bounds
5.0 5.0 5.0 5.0 : Upper bounds

10.3 Program Results

nag_opt_bnd_lin_lsq (e04pcc) Example Program Results

Solution vector
1.8133 1.0000 5.0000 4.3467

Dual Solution
0.0000 -2.7200 2.7200 0.0000

Residual 3.4246