NAG Library Function Document

nag_opt_bounds_deriv (e04kbc)

1 Purpose

nag_opt_bounds_deriv (e04kbc) is a comprehensive quasi-Newton algorithm for finding:
- an unconstrained minimum of a function of several variables;
- a minimum of a function of several variables subject to fixed upper and/or lower bounds on the variables.

First derivatives are required. nag_opt_bounds_deriv (e04kbc) is intended for objective functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

```c
#include <nag.h>
#include <nage04.h>

void nag_opt_bounds_deriv (Integer n,
                          void (*objfun)(Integer n, const double x[], double *objf, double g[],
                                          Nag_Comm *comm),
                          Nag_BoundType bound, double bl[], double bu[], double x[], double *objf,
                          double g[], Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)
```

3 Description

nag_opt_bounds_deriv (e04kbc) is applicable to problems of the form:

Minimize $F(x_1, x_2, \ldots, x_n)$
subject to $l_j \leq x_j \leq u_j, \ j = 1, 2, \ldots, n.$

Special provision is made for unconstrained minimization (i.e., problems which actually have no bounds on the x_j), problems which have only non-negativity bounds, and problems in which $l_1 = l_2 = \cdots = l_n$ and $u_1 = u_2 = \cdots = u_n$. It is possible to specify that a particular x_j should be held constant. You must supply a starting point and a function objfun to calculate the value of $F(x)$ and its first derivatives $\frac{\partial F}{\partial x_j}$ at any point x.

A typical iteration starts at the current point x where n_z (say) variables are free from both their bounds. The vector g_z, whose elements are the derivatives of $F(x)$ with respect to the free variables, is known. A unit lower triangular matrix L and a diagonal matrix D (both of dimension n_z), such that LDL^T is a positive definite approximation to the matrix of second derivatives with respect to the free variables, are also stored. The equations

$$LDL^T p_z = -g_z$$

are solved to give a search direction p_z, which is expanded to an n-vector p by the insertion of appropriate zero elements. Then α is found such that $F(x + \alpha p)$ is approximately a minimum (subject to the fixed bounds) with respect to α; x is replaced by $x + \alpha p$, and the matrices L and D are updated so as to be consistent with the change produced in the gradient by the step αp. If any variable actually reaches a bound during the search along p, it is fixed and n_z is reduced for the next iteration.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria are satisfied, the Lagrange-multipliers are estimated for all the active constraints. If any Lagrange-multiplier estimate is significantly negative, then one of the variables associated with a negative Lagrange-multiplier estimate is released from its bound and the next search direction is computed in the extended...
subspace (i.e., \(n_z \) is increased). Otherwise minimization continues in the current subspace provided that this is practicable. When it is not, or when the stronger convergence criteria is already satisfied, then, if one or more Lagrange-multiplier estimates are close to zero, a slight perturbation is made in the values of the corresponding variables in turn until a lower function value is obtained. The normal algorithm is then resumed from the perturbed point.

If a saddle point is suspected, a local search is carried out with a view to moving away from the saddle point. In addition, nag_opt_bounds_deriv (e04kbc) gives you the option of specifying that a local search should be performed when a point is found which is thought to be a constrained minimum.

If you specify that the problem is unconstrained, nag_opt_bounds_deriv (e04kbc) sets the \(l_j \) to \(-10^{10}\) and the \(u_j \) to \(10^{10}\). Thus, provided that the problem has been sensibly scaled, no bounds will be encountered during the minimization process and nag_opt_bounds_deriv (e04kbc) will act as an unconstrained minimization algorithm.

4 References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent methods NPL Report NAC 37 National Physical Laboratory

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72 National Physical Laboratory

5 Arguments

1: \(n \) – Integer

\(n \) is an Integer. On entry: the number \(n \) of independent variables.

Constraint: \(n \geq 1 \).

2: \(\text{objfun} \) – function, supplied by the user

\(\text{objfun} \) must evaluate the function \(F(x) \) and its first derivatives \(\frac{\partial F}{\partial x_j} \) at any point \(x \). (However, if you do not wish to calculate \(F(x) \) or its first derivatives at a particular \(x \), there is the option of setting an argument to cause nag_opt_bounds_deriv (e04kbc) to terminate immediately.)

The specification of \(\text{objfun} \) is:

```c
void objfun (Integer n, const double x[], double *objf, double g[],
             Nag_Comm *comm)
```

1: \(n \) – Integer

\(n \) is an Integer. On entry: the number \(n \) of variables.

2: \(x[n] \) – const double

\(x[n] \) is a double. On entry: the point \(x \) at which the value of \(F \), or \(F \) and \(\frac{\partial F}{\partial x_j} \), are required.

3: \(\text{objf} \) – double *

\(\text{objf} \) is a double pointer. On exit: \(\text{objfun} \) must set \(\text{objf} \) to the value of the objective function \(F \) at the current point \(x \). If it is not possible to evaluate \(F \), then \(\text{objfun} \) should assign a negative value to \(\text{comm} \rightarrow \text{flag} \); nag_opt_bounds_deriv (e04kbc) will then terminate.
4: \(\mathbf{g}[n] \) – double

Output

On exit: if `comm→flag` = 2 on entry, then `objfun` must set \(\mathbf{g}[j - 1] \) to the value of the first derivative \(\frac{\partial F}{\partial x_j} \) at the current point, \(x \) for \(j = 1, 2, \ldots, n \). If it is not possible to evaluate the first derivatives then `objfun` should assign a negative value to `comm→flag`; `nag_opt_bounds_deriv (e04kbc)` will then terminate.

(If `comm→flag` = 0 on entry, `objfun` must **not** change the elements of \(\mathbf{g} \).)

5: `comm` – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to `objfun`.

- `flag` – Integer
 Input/Output

 On entry: `comm→flag` will be set to 0 or 2. The value 0 indicates that only \(F \) itself needs to be evaluated. The value 2 indicates that both \(F \) and its first derivatives must be calculated.

 On exit: if `objfun` resets `comm→flag` to some negative number then `nag_opt_bounds_deriv (e04kbc)` will terminate immediately with the error indicator `NE_USER_STOP`. If `fail` is supplied to `nag_opt_bounds_deriv (e04kbc)`, `fail` : `errnum` will be set to your setting of `comm→flag`.

- `first` – Nag_Boolean
 Input

 On entry: will be set to Nag_TRUE on the first call to `objfun` and Nag_FALSE for all subsequent calls.

- `nf` – Integer
 Input

 On entry: the number of calculations of the objective function; this value will be equal to the number of calls made to `objfun`, including the current one.

- `user` – double *
- `iuser` – Integer *
- `p` – Pointer

 The type Pointer will be `void *` with a C compiler that defines `void *` and `char *` otherwise.

 Before calling `nag_opt_bounds_deriv (e04kbc)` these pointers may be allocated memory and initialized with various quantities for use by `objfun` when called from `nag_opt_bounds_deriv (e04kbc)`.

Note: `objfun` should be tested separately before being used in conjunction with `nag_opt_bounds_deriv (e04kbc)`. The array \(\mathbf{x} \) must **not** be changed by `objfun`.

3: `bound` – Nag_BoundType

Input

On entry: indicates whether the problem is unconstrained or bounded and, if it is bounded, whether the facility for dealing with bounds of special forms is to be used. `bound` should be set to one of the following values:

- `bound` = Nag_Bounds

 If the variables are bounded and you will be supplying all the \(l_j \) and \(u_j \) individually.

- `bound` = Nag_NoBounds

 If the problem is unconstrained.

- `bound` = Nag_BoundsZero

 If the variables are bounded, but all the bounds are of the form \(0 \leq x_j \).
If all the variables are bounded, and \(l_1 = l_2 = \cdots = l_n \) and \(u_1 = u_2 = \cdots = u_n \).

Constraint: \(\text{bound} = \text{Nag_Bounds}, \text{Nag_NoBounds}, \text{Nag_BoundsZero} \) or \(\text{Nag_BoundsEqual} \).

4: \(\text{bl}[n] \) – double

Input/Output

On entry: the lower bounds \(l_j \).

If \(\text{bound} = \text{Nag_Bounds} \), you must set \(\text{bl}[j-1] \) to \(l_j \), for \(j = 1, 2, \ldots, n \). (If a lower bound is not required for any \(x_j \), the corresponding \(\text{bl}[j-1] \) should be set to a large negative number, e.g., \(-10^{10}\).)

If \(\text{bound} = \text{Nag_BoundsEqual} \), you must set \(\text{bl}[0] \) to \(l_1 \); \text{opt_bounds_deriv} (e04kbc) will then set the remaining elements of \(\text{bl} \) equal to \(\text{bl}[0] \).

If \(\text{bound} = \text{Nag_NoBounds} \) or \(\text{Nag_BoundsZero} \), \(\text{bl} \) will be initialized by \text{opt_bounds_deriv} (e04kbc).

On exit: the lower bounds actually used by \text{opt_bounds_deriv} (e04kbc), e.g., if \(\text{bound} = \text{Nag_BoundsZero} \), \(\text{bl}[0] = \text{bl}[1] = \cdots = \text{bl}[n-1] = 0.0 \).

5: \(\text{bu}[n] \) – double

Input/Output

On entry: the upper bounds \(u_j \).

If \(\text{bound} = \text{Nag_Bounds} \), you must set \(\text{bu}[j-1] \) to \(u_j \), for \(j = 1, 2, \ldots, n \). (If an upper bound is not required for any \(x_j \), the corresponding \(\text{bu}[j-1] \) should be set to a large positive number, e.g., \(10^{10}\).)

If \(\text{bound} = \text{Nag_BoundsEqual} \), you must set \(\text{bu}[0] \) to \(u_1 \); \text{opt_bounds_deriv} (e04kbc) will then set the remaining elements of \(\text{bu} \) equal to \(\text{bu}[0] \).

If \(\text{bound} = \text{Nag_NoBounds} \) or \(\text{Nag_BoundsZero} \), \(\text{bu} \) will be initialized by \text{opt_bounds_deriv} (e04kbc).

On exit: the upper bounds actually used by \text{opt_bounds_deriv} (e04kbc), e.g., if \(\text{bound} = \text{Nag_BoundsZero} \), \(\text{bu}[0] = \text{bu}[1] = \cdots = \text{bu}[n-1] = 10^{10} \).

6: \(\text{x}[n] \) – double

Input/Output

On entry: \(\text{x}[j-1] \) must be set to a guess at the \(j \)th component of the position of the minimum, for \(j = 1, 2, \ldots, n \).

On exit: the final point \(x^* \). Thus, if \(\text{fail_code} = \text{NE_NOERROR} \) on exit, \(\text{x}[j-1] \) is the \(j \)th component of the estimated position of the minimum.

7: \(\text{objf} \) – double *

Input/Output

On entry: if \(\text{options_init_state} = \text{Nag_Init_None} \) or \(\text{Nag_Init_H_S} \), you need not initialize \(\text{objf} \).

If \(\text{options_init_state} = \text{Nag_Init_F_G_H} \) or \(\text{Nag_Init_All} \), \(\text{objf} \) must be set on entry to the value of \(F(x) \) at the initial point supplied in \(\text{x} \).

On exit: the function value at the final point given in \(\text{x} \).

8: \(\text{g}[n] \) – double

Input/Output

On entry:

\(\text{options_init_state} = \text{Nag_Init_F_G_H} \) or \(\text{Nag_Init_All} \)

\(\text{g} \) must be set on entry to the first derivative vector at the initial \(x \).

\(\text{options_init_state} = \text{Nag_Init_None} \) or \(\text{Nag_Init_H_S} \)

\(\text{g} \) need not be set.

On exit: the first derivative vector corresponding to the final point in \(\text{x} \). The elements of \(\text{g} \) corresponding to free variables should normally be close to zero.
9: **options** – Nag_E04_Opt *

Input/Output

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional arguments for nag_opt_bounds_deriv (e04kbc). These structure members offer the means of adjusting some of the argument values of the algorithm and on output will supply further details of the results. A description of the members of **options** is given below in Section 11. Some of the results returned in **options** can be used by nag_opt_bounds_deriv (e04kbc) to perform a ‘warm start’ if it is re-entered (see the member **options**:init_state in Section 11.2).

If any of these optional arguments are required then the structure **options** should be declared and initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_bounds_deriv (e04kbc). However, if the optional arguments are not required the NAG defined null pointer, E04_DEFAULT, can be used in the function call.

10: **comm** – Nag_Comm *

Input/Output

Note: **comm** is a NAG defined type (see Section 3.2.1.1 in the Essential Introduction).

On entry/exit: structure containing pointers for communication with user-supplied functions; see the above description of **objfun** for details. If you do not need to make use of this communication feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_bounds_deriv (e04kbc); **comm** will then be declared internally for use in calls to user-supplied functions.

11: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

5.1 Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled with the structure member **options**:print_level (see Section 11.2). The default, **options**:print_level = Nag_Soln_Iter, provides a single line of output at each iteration and the final result. This section describes the default printout produced by nag_opt_bounds_deriv (e04kbc).

The following line of output is produced at each iteration. In all cases the values of the quantities printed are those in effect on completion of the given iteration.

- **Itn** the iteration count, \(k\).
- **Nfun** the cumulative number of calls made to **objfun**.
- **Objective** the value of the objective function, \(F(x^{(k)})\).
- **Norm g** the Euclidean norm of the projected gradient vector, \(\|g_z(x^{(k)})\|\).
- **Norm x** the Euclidean norm of \(x^{(k)}\).
- **Norm(x(k-1)-x(k))** the Euclidean norm of \(x^{(k-1)} - x^{(k)}\).
- **Step** the step \(\alpha^{(k)}\) taken along the computed search direction \(p^{(k)}\).
- **Cond H** the ratio of the largest to the smallest element of the diagonal factor \(D\) of the projected Hessian matrix. This quantity is usually a good estimate of the condition number of the projected Hessian matrix. (If no variables are currently free, this value will be zero.)

The printout of the final result consists of:

- **x** the final point, \(x^*\).
- **g** the final projected gradient vector, \(g_z(x^*)\).
- **Status** the final state of the variable with respect to its bound(s).
6 Error Indicators and Warnings

When one of NE_USER_STOP, NE_INT_ARG_LT, NE_BOUND, NE_DERIV_ERRORS, NE_OPT_NOT_INIT, NE_BAD_PARAM, NE_2_REAL_ARG_LT, NE_INVALID_INT_RANGE_1, NE_INVALID_REAL_RANGE_EF, NE_INVALID_REAL_RANGE_FF, NE_INIT_MEM, NE_HESD or NE_ALLOC_FAIL occurs, no values will have been assigned by nag_opt_bounds_deriv (e04kbc) to \(\text{objf} \) or to the elements of \(g \), \(\text{options:hesl} \) or \(\text{options:hesd} \).

An exit of \(\text{fail:code} = \text{NW_TOO_MANY_ITER}, \text{NW_COND_MIN} \) and \(\text{NW_LOCAL_SEARCH} \) may also be caused by mistakes in \(\text{objfun} \), by the formulation of the problem or by an awkward function. If there are no such mistakes, it is worth restarting the calculations from a different starting point (not the point at which the failure occurred) in order to avoid the region which caused the failure.

\textbf{NE_2_REAL_ARG_LT}

On entry, \(\text{options:step_max} = \langle \text{value} \rangle \) while \(\text{options:optim_tol} = \langle \text{value} \rangle \). These arguments must satisfy \(\text{options:step_max} \geq \text{options:optim_tol} \).

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

\textbf{NE_BAD_PARAM}

On entry, argument \(\text{bound} \) had an illegal value.

On entry, argument \(\text{options:init_state} \) had an illegal value.

On entry, argument \(\text{options:print_level} \) had an illegal value.

\textbf{NE_BOUND}

The lower bound for variable \(\langle \text{value} \rangle \) (array element \(\text{bl}[[\langle \text{value} \rangle]] \)) is greater than the upper bound.

\textbf{NE_CHOLESKY_OVERFLOW}

An overflow would have occurred during the updating of the Cholesky factors if the calculations had been allowed to continue. Restart from the current point with \(\text{options:init_state} = \text{Nag_Init_None} \).

\textbf{NE_DERIV_ERRORS}

Large errors were found in the derivatives of the objective function.

\textbf{NE_HESD}

The initial values of the supplied \(\text{options:hesd} \) has some value(s) which is negative or too small or the ratio of the largest element of \(\text{options:hesd} \) to the smallest is too large.

\textbf{NE_INIT_MEM}

Option \(\text{options:init_state} = \langle \text{string} \rangle \) but the pointer \(\langle \text{string} \rangle \) in the option structure has not been allocated memory.

\textbf{NE_INT_ARG_LT}

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 1 \).

\textbf{NE_INVALID_INT_RANGE_1}

Value \(\langle \text{value} \rangle \) given to \(\text{options:max_iter} \) is not valid. Correct range is \(\text{options:max_iter} \geq 0 \).

\textbf{NE_INVALID_REAL_RANGE_EF}

Value \(\langle \text{value} \rangle \) given to \(\text{options:optim_tol} \) not valid. Correct range is \(\epsilon \leq \text{options:optim_tol} < 1.0 \).
NE_INVALID_REAL_RANGE_FF

Value \((\text{value})\) given to \(\text{options.linesearch_tol}\) not valid. Correct range is \(0.0 \leq \text{options.linesearch_tol} < 1.0\).

NE_NO_MEM

Option \(\text{options.init_state} = (\text{string})\) but at least one of the pointers \((\text{string})\) in the option structure has not been allocated memory.

NE_NOT_APPEND_FILE

Cannot open file \((\text{string})\) for appending.

NE_NOT_CLOSE_FILE

Cannot close file \((\text{string})\).

NE_OPT_NOT_INIT

Options structure not initialized.

NE_USER_STOP

User requested termination, user flag value = \((\text{value})\).

This exit occurs if you set \(\text{comm} \rightarrow \text{flag}\) to a negative value in \(\text{objfun}\). If \text{fail} is supplied the value of \text{fail.errnum} will be the same as your setting of \(\text{comm} \rightarrow \text{flag}\).

NE_WRITE_ERROR

Error occurred when writing to file \((\text{string})\).

NW_COND_MIN

The conditions for a minimum have not all been satisfied, but a lower point could not be found.

Provided that, on exit, the first derivatives of \(F(x)\) with respect to the free variables are sufficiently small, and that the estimated condition number of the second derivative matrix is not too large, this error exit may simply mean that, although it has not been possible to satisfy the specified requirements, the algorithm has in fact found the minimum as far as the accuracy of the machine permits. This could be because \(\text{options.optim.tol}\) has been set so small that rounding error in \(\text{objfun}\) makes attainment of the convergence conditions impossible.

If the estimated condition number of the approximate Hessian matrix at the final point is large, it could be that the final point is a minimum but that the smallest eigenvalue of the second derivative matrix is so close to zero that it is not possible to recognize the point as a minimum.

NW_LOCAL_SEARCH

The local search has failed to find a feasible point which gives a significant change of function value.

If the problem is a genuinely unconstrained one, this type of exit indicates that the problem is extremely ill conditioned or that the function has no minimum. If the problem has bounds which may be close to the minimum, it may just indicate that steps in the subspace of free variables happened to meet a bound before they changed the function value.

NW_TOO_MANY_ITER

The maximum number of iterations, \((\text{value})\), have been performed.

If steady reductions in \(F(x)\), were monitored up to the point where this exit occurred, then the exit probably occurred simply because \(\text{options.max_iter}\) was set too small, so the calculations should be restarted from the final point held in \(x\). This exit may also indicate that \(F(x)\) has no minimum.
7 Accuracy

A successful exit (fail.code = NE_NOERROR) is made from nag_opt_bounds_deriv (e04kbc) when (B1, B2 and B3) or B4 hold, and the local search (if used) confirms a minimum, where

\[B1 \equiv \alpha \|g^{(k)}\| < (\text{options.optim_tol} + \sqrt{\epsilon}) \times (1.0 + \|x^{(k)}\|) \]
\[B2 \equiv |F^{(k)} - F^{(k-1)}| < (\text{options.optim_tol}^2 + \epsilon) \times (1.0 + |F^{(k)}|) \]
\[B3 \equiv \|g^{(k)}\| < (\epsilon^{1/3} + \text{options.optim_tol}) \times (1.0 + |F^{(k)}|) \]
\[B4 \equiv \|g^{(k)}\| < 0.01 \times \sqrt{\epsilon}. \]

(Quantities with superscript \(k \) are the values at the \(k \)th iteration of the quantities mentioned in Section 3; \(\epsilon \) is the machine precision, . denotes the Euclidean norm and options.optim_tol is described in Section 11.)

If fail.code = NE_NOERROR, then the vector in \(x \) on exit, \(x_{\text{sol}} \), is almost certainly an estimate of the position of the minimum, \(x_{\text{true}} \), to the accuracy specified by options.optim_tol.

If fail.code = NW_COND_MIN or NW_LOCAL_SEARCH, \(x_{\text{sol}} \) may still be a good estimate of \(x_{\text{true}} \), but the following checks should be made. Let the largest of the first \(n_z \) elements of options.hess be options.hess[b], let the smallest be options.hess[s], and define \(k = \text{options.hess}[b]/\text{options.hess}[s] \). The scalar \(k \) is usually a good estimate of the condition number of the projected Hessian matrix at \(x_{\text{sol}} \). If

(a) the sequence \(\{F(x^{(k)})\} \) converges to \(F(x_{\text{sol}}) \) at a superlinear or a fast linear rate,

(b) \(\|g_z(x_{\text{sol}})\|^2 < 10.0 \times \epsilon \), and

(c) \(k < 1.0/\|g_z(x_{\text{sol}})\| \),

then it is almost certain that \(x_{\text{sol}} \) is a close approximation to the position of a minimum. When (b) is true, then usually \(F(x_{\text{sol}}) \) is a close approximation to \(F(x_{\text{true}}) \). The quantities needed for these checks are all available in the results printout from nag_opt_bounds_deriv (e04kbc); in particular the final value of Cond.H gives \(k \).

Further suggestions about confirmation of a computed solution are given in the e04 Chapter Introduction.

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Timing

The number of iterations required depends on the number of variables, the behaviour of \(F(x) \), the accuracy demanded and the distance of the starting point from the solution. The number of multiplications performed in an iteration of nag_opt_bounds_deriv (e04kbc) is roughly proportional to \(n_z^2 \). In addition, each iteration makes at least one call of objfun with comm.flag = 2 if options.minlin = Nag_Lin_Deriv is used or one call of objfun with comm.flag = 0 if options.minlin = Nag_Lin_NoDeriv is chosen. So, unless \(F(x) \) can be evaluated very quickly, the run time will be dominated by the time spent in objfun.

9.2 Scaling

Ideally, the problem should be scaled so that, at the solution, \(F(x) \) and the corresponding values of the \(x_j \) are each in the range \((-1, +1)\), and so that at points one unit away from the solution, \(F(x) \) differs from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix at the solution is well conditioned. It is unlikely that you will be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the minimization problem, so that nag_opt_bounds_deriv (e04kbc) will take less computer time.
9.3 Unconstrained Minimization

If a problem is genuinely unconstrained and has been scaled sensibly, the following points apply:

(a) n_z will always be n,

(b) if `options.init.state` = Nag_Init_All or Nag_Init_H_S on entry, `options.state[j-1]` has simply to be set to j, for $j = 1, 2, \ldots, n$,

(c) `options.hesl` and `options.hesd` will be factors of the full approximate second derivative matrix with elements stored in the natural order,

(d) the elements of g should all be close to zero at the final point,

(e) the Status values given in the printout from nag_opt_bounds_deriv (e04kbc) and in `options.state` on exit are unlikely to be of interest (unless they are negative, which would indicate that the modulus of one of the x_j has reached 10^{10} for some reason),

(f) `Norm g` simply gives the norm of the first derivative vector.

10 Example

This example minimizes the function

$$F = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

subject to the bounds

$$\begin{align*}
1 & \leq x_1 \leq 3 \\
-2 & \leq x_2 \leq 0 \\
1 & \leq x_4 \leq 3
\end{align*}$$

starting from the initial guess $(3.0, -0.9, 0.13, 1.1)^T$.

The `options` structure is declared and initialized by nag_opt_init (e04xxc). Four option values are read from a data file by use of nag_opt_read (e04xyc). The memory freeing function nag_opt_free (e04xzc) is used to free the memory assigned to the pointers in the option structure. You must not use the standard C function `free()` for this purpose.

10.1 Program Text

```c
#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL objfun(Integer n, const double x[], double *f, double g[], Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
int main(void)
```
const char *optionsfile = "e04kbc.e.opt";
Nag_Boolean print;
Integer exit_status = 0;
Integer n;
Nag_BoundType bound;
Nag_E04_Opt options;
double *bl = 0, *bu = 0, *g = 0, objf, *x = 0;
Nag_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_opt_bounds_deriv (e04kbc) Example Program Results\n");
fflush(stdout);
n = 4;
if (n >= 1)
{
 if (!(x = NAG_ALLOC(n, double))
 || !(g = NAG_ALLOC(n, double))
 || !(bl = NAG_ALLOC(n, double))
 || !(bu = NAG_ALLOC(n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
}
else
{
 printf("Invalid n.\n");
 exit_status = 1;
 return exit_status;
}
x[0] = 3.0;
x[1] = -0.9;
x[2] = 0.13;
x[3] = 1.1;

/* Initialise options structure and read option values from file */
print = Nag_TRUE;
/* nag_opt_init (e04xxc).
 * Initialization function for option setting
 */
nag_opt_init(&options);
#ifdef _WIN32
strcpy_s(options.outfile, _countof(options.outfile), "stdout");
#else
strcpy(options.outfile, "stdout");
#endif
/* nag_opt_read (e04xyc).
 * Read options from a text file
 */
nag_opt_read("e04kbc", optionsfile, &options, print, options.outfile, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_opt_read (e04xyc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
bound = Nag_Bounds;
bl[0] = 1.0;
bu[0] = 3.0;
bl[1] = -2.0;
bu[1] = 0.0;
/* Third variable is not bounded, so third lower bound
 * is set to a large negative number and third upper
 * bound to a large positive number.*/
b1[2] = -1.0e10;
bu[2] = 1.0e10;
b1[3] = 1.0;
bu[3] = 3.0;

/* nag_opt_bounds_deriv (e04kbc), see above. */
nag_opt_bounds_deriv(n, objfun, bound, b1, bu, x, &objf,
g, &options, &comm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error/Warning from nag_opt_bounds_deriv (e04kbc).\n" fail.message);
 if (fail.code != NW_COND_MIN)
 exit_status = 1;
}

END:
NAG_FREE(x);
NAG_FREE(g);
NAG_FREE(bl);
NAG_FREE(bu);
return exit_status;

static void NAG_CALL objfun(Integer n, const double x[], double *objf, double g[], Nag_Comm *comm)
{
 /* Routine to evaluate objective function. */
 double x1, x2, x3, x4;
 double tmp, tmp1, tmp2, tmp3, tmp4;
 x1 = x[0];
 x2 = x[1];
 x3 = x[2];
 x4 = x[3];

 /* Supply a single function value */
 tmp1 = x1 + 10.0*x2;
 tmp2 = x3 - x4;
 tmp3 = x2 - 2.0*x3, tmp3 *= tmp3;
 tmp4 = x1 - x4, tmp4 *= tmp4;
 *objf = tmp1*tmp1 + 5.0*tmp2*tmp2 + tmp3*tmp3 + 10.0*tmp4*tmp4;
 if (comm->flag != 0)
 {
 tmp = x1 - x4;
 g[0] = 2.0*(x1 + 10.0*x2) + 40.0*tmp*tmp*tmp;
 tmp = x2 - 2.0*x3;
 g[1] = 20.0*(x1 + 10.0*x2) + 4.0*tmp*tmp*tmp;
 tmp = x2 - 2.0*x3;
 g[2] = 10.0*(x3 - x4) - 8.0*tmp*tmp*tmp;
 tmp = x1 - x4;
 g[3] = 10.0*(x4 - x3) - 40.0*tmp*tmp*tmp;
 }
}

/* objfun */
10.2 Program Data

nag_opt_bounds_deriv (e04kbc) Example Program Optional Parameters

Following options for e04kbc are read by e04xyc.

```plaintext
begin e04kbc

print_level = Nag_Soln_Iter_Full /* Print full iterations and solution. */
max_iter = 40 /* Perform maximum of 40 iterations */
step_max = 4.0 /* Estimate minimum within 4 units of start */
f_est = 0.0 /* Zero is a lower bound on the function value */
end
```

10.3 Program Results

nag_opt_bounds_deriv (e04kbc) Example Program Results

Optional parameter setting for e04kbc.

```
--------------------------------------
Option file: e04kbce.opt
print_level set to Nag_Soln_Iter_Full
max_iter set to 40
step_max set to 4.00e+00
f_est set to 0.00e+00
Parameters to e04kbc
-------------------
Number of variables........... 4
optim_tol................... 1.05e-07
f_est................... 0.00e+00
step_max................... 4.00e+00
init_state........... Nag_Init_None
local_search............... Nag_TRUE
minlin.............. Nag_Lin_Deriv
deriv_check............. Nag_TRUE
print_level.... Nag_Soln_Iter_Full
machine precision....... 1.11e-16
outfile................. stdout

Memory allocation:
state................... Nag
hesl.................... Nag
hesd................... Nag

Results from e04kbc:
-------------------
```

Iteration results:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.7284e+02</td>
<td>2.9e+02</td>
<td>3.3e+00</td>
<td></td>
<td>1.0e+00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>g</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0000e+00</td>
<td>2.6236e+02</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>2</td>
<td>-9.0000e-01</td>
<td>-1.2624e+02</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>1.3000e+00</td>
<td>2.7872e+00</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>1.1000e+00</td>
<td>-2.6466e+02</td>
<td>Free</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.6813e+01</td>
<td>2.7e+01</td>
<td>3.7e+00</td>
<td>1.2e+00</td>
<td>4.0e-03</td>
<td>3.4e+01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>g</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2000e+00</td>
<td>2.1529e+01</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>2</td>
<td>-3.9251e-01</td>
<td>-1.9503e+01</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>1.3880e-01</td>
<td>-1.8450e+01</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>2.1639e+00</td>
<td>-2.9276e+00</td>
<td>Free</td>
</tr>
</tbody>
</table>

Note: The table above includes the iteration results for the optimization process. Each row represents a step in the iteration, showing the change in the objective function, the norm of the gradient, and the change in variables. The status indicates whether the variable is at an upper bound, free, or at a lower bound.
Minimizing or Maximizing a Function

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2.3453e+01</td>
<td>2.0e+01</td>
<td>3.7e+00</td>
<td>2.6e-01</td>
<td>1.0e-02</td>
<td>4.2e+01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>g</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0000e+00</td>
<td>2.9429e+01</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>2</td>
<td>-2.2652e-01</td>
<td>1.2204e+01</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>3.1377e-01</td>
<td>-1.3004e+01</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>2.1125e+00</td>
<td>-9.9713e+00</td>
<td>Free</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>2.1599e+01</td>
<td>2.8e+01</td>
<td>3.7e+00</td>
<td>2.2e-01</td>
<td>8.7e-03</td>
<td>2.3e+02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>g</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0000e+00</td>
<td>2.6022e+01</td>
<td>Free</td>
</tr>
<tr>
<td>2</td>
<td>-2.5718e-01</td>
<td>-6.5438e-01</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>5.3101e-01</td>
<td>2.3232e+00</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>2.1431e+00</td>
<td>-9.0525e+00</td>
<td>Free</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>1.4024e+01</td>
<td>1.5e+01</td>
<td>3.0e+00</td>
<td>1.7e-01</td>
<td>1.0e+00</td>
<td>1.8e+01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>g</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0816e+00</td>
<td>7.7589e-01</td>
<td>Free</td>
</tr>
<tr>
<td>2</td>
<td>-1.6942e-01</td>
<td>8.3975e-01</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>5.1518e-01</td>
<td>-1.5466e+00</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>2.0515e+00</td>
<td>1.5362e+01</td>
<td>Free</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12</td>
<td>5.3035e+00</td>
<td>9.3e+00</td>
<td>1.7e+00</td>
<td>3.7e-01</td>
<td>1.0e+00</td>
<td>1.1e+01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>g</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0732e+00</td>
<td>1.7792e+00</td>
<td>Free</td>
</tr>
<tr>
<td>2</td>
<td>0.0000e+00</td>
<td>1.8627e+01</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>4.4590e-01</td>
<td>2.6328e+00</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>1.2826e+00</td>
<td>-9.0525e+00</td>
<td>Free</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>13</td>
<td>4.6913e+00</td>
<td>1.9e+01</td>
<td>1.6e+00</td>
<td>9.5e-02</td>
<td>6.6e-02</td>
<td>7.3e+01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>g</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000e+00</td>
<td>1.5613e+00</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>2</td>
<td>0.0000e+00</td>
<td>1.7336e+01</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>4.3666e-01</td>
<td>-2.5266e+00</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>1.2222e+00</td>
<td>8.2939e+00</td>
<td>Free</td>
</tr>
<tr>
<td>Itn</td>
<td>Nfun</td>
<td>Objective</td>
<td>Norm g</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>3.9688e+00</td>
<td>8.3e+00</td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>16</td>
<td>2.8304e+00</td>
<td>6.4e+00</td>
<td>1.5e+00</td>
<td>1.6e-01</td>
<td>1.0e+00</td>
<td>1.9e+01</td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>17</td>
<td>2.4344e+00</td>
<td>2.4e-01</td>
<td>1.5e+00</td>
<td>6.5e-02</td>
<td>1.1e-01</td>
<td>2.6e+00</td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>18</td>
<td>2.4339e+00</td>
<td>8.7e-02</td>
<td>1.5e+00</td>
<td>3.2e-03</td>
<td>1.0e+00</td>
<td>4.1e+00</td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>19</td>
<td>2.4338e+00</td>
<td>3.5e-06</td>
<td>1.5e+00</td>
<td>1.5e-05</td>
<td>1.0e+00</td>
<td>4.1e+00</td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>20</td>
<td>2.4338e+00</td>
<td>8.2e-09</td>
<td>1.5e+00</td>
<td>4.6e-08</td>
<td>1.0e+00</td>
<td>4.1e+00</td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>21</td>
<td>2.4338e+00</td>
<td>8.2e-09</td>
<td>1.5e+00</td>
<td>4.2e-11</td>
<td>1.0e+00</td>
<td>1.0e+00</td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>22</td>
<td>2.4338e+00</td>
<td>8.2e-09</td>
<td>1.5e+00</td>
<td>4.2e-11</td>
<td>1.0e+00</td>
<td>1.0e+00</td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable
- **x**
- **g**

Status
- Lower Bound
- Free
<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond H</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>23</td>
<td>2.4338e+00</td>
<td>8.2e-09</td>
<td>1.5e+00</td>
<td>4.2e-11</td>
<td>1.0e+00</td>
<td>1.0e+00</td>
</tr>
</tbody>
</table>

Variable | x | g | Status |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000e+00</td>
<td>2.9535e-01</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>2</td>
<td>-8.5233e-02</td>
<td>-8.1823e-09</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>4.0930e-01</td>
<td>1.0494e-10</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>1.0000e+00</td>
<td>5.9070e+00</td>
<td>Lower Bound</td>
</tr>
</tbody>
</table>

Local search performed.

Final solution:

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm(x(k-1)-x(k))</th>
<th>Step</th>
<th>Cond H</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>27</td>
<td>2.4338e+00</td>
<td>8.2e-09</td>
<td>1.5e+00</td>
<td>8.2e-09</td>
<td>1.0e+00</td>
<td>1.0e+00</td>
</tr>
</tbody>
</table>

Variable | x | g | Status |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000e+00</td>
<td>2.9535e-01</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>2</td>
<td>-8.5233e-02</td>
<td>-8.1823e-09</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>4.0930e-01</td>
<td>1.0494e-10</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>1.0000e+00</td>
<td>5.9070e+00</td>
<td>Lower Bound</td>
</tr>
</tbody>
</table>

Error/Warning from nag_opt_bounds_deriv (e04kbc).

NW_COND_MIN:
The conditions for a minimum have not all been satisfied but a lower point could not be found.

11 Optional Arguments

A number of optional input and output arguments to nag_opt_bounds_deriv (e04kbc) are available through the structure argument `options`, type Nag_E04_Opt. An argument may be selected by assigning an appropriate value to the relevant structure member; those arguments not selected will be assigned default values. If no use is to be made of any of the optional arguments you should use the NAG defined null pointer, `E04_DEFAULT`, in place of `options` when calling nag_opt_bounds_deriv (e04kbc); the default settings will then be used for all arguments.

Before assigning values to `options` directly the structure must be initialized by a call to the function nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case initialization of the `options` structure will be performed automatically if not already done. Any subsequent direct assignment to the `options` structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the `options` structure is required, then this must be done directly in the calling program; they cannot be assigned using nag_opt_read (e04xyc).

11.1 Optional Argument Checklist and Default Values

For easy reference, the following list shows the members of `options` which are valid for nag_opt_bounds_deriv (e04kbc) together with their default values where relevant. The number ϵ is a generic notation for *machine precision* (see `nag_machine_precision` (X02AJC)).

```c
Boolean list
Nag_PrintType print_level
char outfile[80]
void (*print_fun)()
Boolean deriv_check
Nag_InitType init_state
Integer max_iter
double optim_tol
Nag_LinFun minlin
double linesearch_tol
double step_max
double f_est
Nag_TRUE
Nag_Soln_Iter
stdout
NULL
Nag_TRUE
Nag_Init_None
50n
10$\sqrt{\epsilon}$
Nag_Lin_Deriv
0.9 (0.0 if n = 1)
100000.0
```
Boolean local_search
Integer *state
double *hesl
double *hesd
Integer iter
Integer nf

11.2 Description of the Optional Arguments

list – NagBoolean Default = Nag_TRUE

On entry: if `options.list = Nag_TRUE` the argument settings in the call to `nag_opt_bounds_deriv` (e04kbc) will be printed.

print_level – NagPrintType Default = Nag_Soln_Iter

On entry: the level of results printout produced by `nag_opt_bounds_deriv` (e04kbc). The following values are available:

- **Nag_NoPrint** No output.
- **Nag_Soln** The final solution.
- **Nag_Iter** One line of output for each iteration.
- **Nag_Soln_Iter** The final solution and one line of output for each iteration.
- **Nag_Soln_Iter_Full** The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 11.3.

Constraint: `options.print_level = Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter` or `Nag_Soln_Iter_Full`.

outfile – const char[80] Default = stdout

On entry: the name of the file to which results should be printed. If `options.outfile[0] = \'0\'` then the stdout stream is used.

print_fun – pointer to function Default = NULL

On entry: printing function defined by you; the prototype of `options.print_fun` is

```c
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);
```

See Section 11.3.1 below for further details.

deriv_check – NagBoolean Default = Nag_TRUE

If `options.init_state ≠ Nag_Init_None` then the default of `options.deriv_check` is changed to Nag_FALSE.

On entry: if `options.deriv_check = Nag_TRUE` a check of the derivatives defined by `objfun` will be made at the starting point x. The derivative check is carried out by a call to `nag_opt_check_deriv` (e04hcc). If `options.init_state` is set to a value other than its default value (`options.init_state = Nag_Init_None`) then the default of `options.deriv_check` will be Nag_FALSE. A starting point of $x = 0$ or $x = 1$ should be avoided if this test is to be meaningful, if either of these starting points is necessary then `nag_opt_check_deriv` (e04hcc) should be used to check `objfun` at a different point prior to calling `nag_opt_bounds_deriv` (e04kbc).
Init State

- **Nag_InitType**

On entry: **options.init_state** specifies which of the arguments **objf, g, options.hesl, options.hesd** and **options.state** are actually being initialized. Such information will generally reduce the time taken by **nag_opt_bounds_deriv (e04kbc)**.

options.init_state = Nag_Init_None

No values are assumed to have been set in any of **objf, g, options.hesl, options.hesd** or **options.state** (nag_opt_bounds_deriv (e04kbc) will use the unit matrix as the initial estimate of the Hessian matrix.)

options.init_state = Nag_Init_F_G_H

The arguments **objf** and **g** must contain the value of \(F(x)\) and its first derivatives at the starting point. The elements **options.hesl\([j-1]\)** must have been set to estimates of the derivatives \(\frac{\partial^2 F}{\partial x_j^2}\) at the starting point. No values are assumed to have been set in **options.hesl** or **options.state**.

options.init_state = Nag_Init_H_S

No values are assumed to have been set in **objf** or **g**, but **options.hesl, options.hesd** and **options.state** must have been set as for **options.init_state = Nag_Init_All**. (This option is useful for starting off a minimization run using second derivative information from a previous, similar, run.)

Constraint: options.init_state = Nag_Init_None, Nag_Init_F_G_H, Nag_Init_All or Nag_Init_H_S.

Max Iter

- **Integer**

On entry: the limit on the number of iterations allowed before termination.

Constraint: options.max_iter \(\geq 0\).

Optim Tol

- **Double**

On entry: the accuracy in \(x\) to which the solution is required. If \(x_{true}\) is the true value of \(x\) at the minimum, then \(x_{sol}\), the estimated position prior to a normal exit, is such that

\[
\|x_{sol} - x_{true}\| < options.optim_tol \times (1.0 + \|x_{true}\|),
\]

where \(\|y\| = \left(\sum_{j=1}^{n} y_j^2\right)^{1/2}\). For example, if the elements of \(x_{sol}\) are not much larger than 1.0 in modulus and if **options.optim_tol** is set to \(10^{-5}\), then \(x_{sol}\) is usually accurate to about 5 decimal places. (For further details see Section 9.) If the problem is scaled roughly as described in Section 9 and \(\epsilon\) is the *machine precision*, then \(\sqrt{\epsilon}\) is probably the smallest reasonable choice for **options.optim_tol**. (This is because, normally, to *machine accuracy*, \(F(x + \sqrt{\epsilon} e_j) = F(x)\) where \(e_j\) is any column of the identity matrix.)

Constraint: \(\epsilon \leq options.optim_tol < 1.0\).

Minlin

- **Nag_LinFun**

On entry: **options.minlin** specifies whether the linear minimizations (i.e., minimizations of \(F(x + \alpha p)\) with respect to \(\alpha\)) are to be performed by a function which just requires the evaluation of \(F(x)\), **Nag_Lin_NoDeriv**, or by a function which also requires the first derivatives of \(F(x)\), **Nag_Lin_Deriv**.

It will often be possible to evaluate the first derivatives of \(F\) in about the same amount of computer time that is required for the evaluation of \(F\) itself – if this is so then **nag_opt_bounds_deriv (e04kbc)** should be called with **options.minlin** set to **Nag_Lin_Deriv**. However, if the evaluation of the derivatives takes
more than about 4 times as long as the evaluation of F, then a setting of Nag_Lin_NoDeriv will usually be preferable. If in doubt, use the default setting Nag_Lin_Deriv as it is slightly more robust.

Constraint: $\text{options.minlin} = \text{Nag}_\text{Lin}_\text{Deriv}$ or $\text{Nag}_\text{Lin}_\text{NoDeriv}$.

$\text{linesearch}_\text{tol} \quad \text{double} \\
\text{Default} = 0.9 \text{ if } n > 1, \text{ and } 0.0 \text{ otherwise}$

If $\text{options.minlin} = \text{Nag}_\text{Lin}_\text{NoDeriv}$ then the default value of $\text{options.linesearch}_\text{tol}$ will be changed from 0.9 to 0.5 if $n > 1$.

On entry: every iteration of nag_opt_bounds_deriv (e04kbc) involves a linear minimization (i.e., minimization of $F(x + \alpha p)$ with respect to α). $\text{options.linesearch}_\text{tol}$ specifies how accurately these linear minimizations are to be performed. The minimum with respect to α will be located more accurately for small values of $\text{options.linesearch}_\text{tol}$ (say 0.01) than for large values (say 0.9).

Although accurate linear minimizations will generally reduce the number of iterations performed by nag_opt_bounds_deriv (e04kbc), they will increase the number of function evaluations required for each iteration. On balance, it is usually more efficient to perform a low accuracy linear minimization.

A smaller value such as 0.01 may be worthwhile:

(a) if objfun takes so little computer time that it is worth using extra calls of objfun to reduce the number of iterations and associated matrix calculations
(b) if $F(x)$ is a penalty or barrier function arising from a constrained minimization problem (since such problems are very difficult to solve)
(c) if $\text{options.minlin} = \text{Nag}_\text{Lin}_\text{NoDeriv}$ and the calculation of first derivatives takes so much computer time (relative to the time taken to evaluate the function) that it is worth using extra function evaluations to reduce the number of derivative evaluations.

If $n = 1$, the default for $\text{options.linesearch}_\text{tol} = 0.0$ (if the problem is effectively one-dimensional then $\text{options.linesearch}_\text{tol}$ should be set to 0.0 even though $n > 1$; i.e., if for all except one of the variables the lower and upper bounds are equal).

Constraint: $0.0 \leq \text{options.linesearch}_\text{tol} < 1.0$.

$\text{step}_\text{max} \quad \text{double} \\
\text{Default} = 100000.0$

On entry: an estimate of the Euclidean distance between the solution and the starting point supplied. (For maximum efficiency a slight overestimate is preferable.) nag_opt_bounds_deriv (e04kbc) will ensure that, for each iteration,

$$
\left(\sum_{j=1}^{n} \left[x_j^{(k)} - x_j^{(k-1)} \right]^2 \right)^{1/2} \leq \text{options.step}_\text{max},
$$

where k is the iteration number. Thus, if the problem has more than one solution, nag_opt_bounds_deriv (e04kbc) is most likely to find the one nearest the starting point. On difficult problems, a realistic choice can prevent the sequence of $x^{(k)}$ entering a region where the problem is ill-behaved and can also help to avoid possible overflow in the evaluation of $F(x)$. However an underestimate of $\text{options.step}_\text{max}$ can lead to inefficiency.

Constraint: $\text{options.step}_\text{max} \geq \text{options.optim}_\text{tol}$.

$\text{f}_\text{est} \quad \text{double}$

On entry: an estimate of the function value at the minimum. This estimate is just used for calculating suitable step lengths for starting linear minimizations off, so the choice is not too critical. However, it is better for $\text{options.f}_\text{est}$ to be set to an underestimate rather than to an overestimate. If no value is supplied then an initial step length of 1.0, subject to the variable bounds, will be used.

$\text{local}_\text{search} \quad \text{Nag}_\text{Boolean} \\
\text{Default} = \text{Nag}_\text{TRUE}$

On entry: $\text{options.local}_\text{search}$ must specify whether or not you wish a ‘local search’ to be performed when a point is found which is thought to be a constrained minimum.
If `options.local_search = Nag_TRUE` and either the quasi-Newton direction of search fails to produce a lower function value or the convergence criteria are satisfied, then a local search will be performed. This may move the search away from a saddle point or confirm that the final point is a minimum.

If `options.local_search = Nag_FALSE` there will be no local search when a point is found which is thought to be a minimum.

The amount of work involved in a local search is comparable to twice that required in a normal iteration to minimize \(F(x + \alpha p) \) with respect to \(\alpha \). For most problems this will be small (relative to the total time required for the minimization). `options.local_search` could be set \(\text{Nag_FALSE} \) if:

- it is known from the physical properties of a problem that a stationary point will be the required minimum;
- a point which is not a minimum could be easily recognized, for example if the value of \(F(x) \) at the minimum is known.

\[\text{state} = \text{Integer} * \]
Default memory = \(n \)

\[\text{On entry: options.state need not be set if the default option of options.init.state = Nag_Init_None is used as } n \text{ values of memory will be automatically allocated by } \text{nag_opt_bounds_deriv (e04kbc)}. \]

If `options.init.state = Nag_Init_All` or `Nag_Init_H_S` has been chosen, `options.state` must point to a minimum of \(n \) elements of memory. This memory will already be available if the calling program has used the `options` structure in a previous call to `nag_opt_bounds_deriv (e04kbc)` with `options.init.state = Nag_Init_None` and the same value of \(n \). If a previous call has not been made you must allocate sufficient memory.

When `options.init.state = Nag_Init_All` or `Nag_Init_H_S` then `options.state` must specify information about which variables are currently on their bounds and which are free. If \(x_j \) is:

(a) fixed on its upper bound, `options.state[j - 1]` is \(-1 \);
(b) fixed on its lower bound, `options.state[j - 1]` is \(-2 \);
(c) effectively a constant (i.e., \(l_j = u_j \)), `options.state[j - 1]` is \(-3 \);
(d) free, `options.state[j - 1]` gives its position in the sequence of free variables.

If `options.init.state = Nag_Init_None` or `Nag_Init_F_G_H`, `options.state` will be initialized by `nag_opt_bounds_deriv (e04kbc)`.

If `options.init.state = Nag_Init_All` or `Nag_Init_H_S`, `options.state` must be initialized before `nag_opt_bounds_deriv (e04kbc)` is called.

\[\text{On exit: options.state gives information as above about the final point given in } x. \]

\[\text{hesl} = \text{double} * \]
Default memory = \(\max(n[n - 1]/2, 1) \)

\[\text{hesd} = \text{double} * \]
Default memory = \(n \)

\[\text{On entry: options.hesl and options.hesd need not be set if the default of options.init.state = Nag_Init_None is used as sufficient memory will be automatically allocated by } \text{nag_opt_bounds_deriv (e04kbc)}. \]

If `options.init.state = Nag_Init_All` or `options.init.state = Nag_Init_H_S` has been set then `options.hesl` must point to a minimum of \(\max(n[n - 1]/2, 1) \) elements of memory.

`options.hesd` must point to at least \(n \) elements of memory if `options.init.state = Nag_Init_F_G_H, Nag_Init_All` or `Nag_Init_H_S` has been chosen.

The appropriate amount of memory will already be available for `options.hesl` and `options.hesd` if the calling program has used the `options` structure in a previous call to `nag_opt_bounds_deriv (e04kbc)` with `options.init.state = Nag_Init_None` and the same value of \(n \). If a previous call has not been made, you must allocate sufficient memory.

`options.hesl` and `options.hesd` are used to store the factors \(L \) and \(D \) of the current approximation to the matrix of second derivatives with respect to the free variables (see Section 3). (The elements of the matrix are assumed to be ordered according to the permutation specified by the positive elements of
options.state, see above.) options.hesl holds the lower triangle of L, omitting the unit diagonal, stored by rows. options.hesd stores the diagonal elements of D. Thus if n_z elements of options.state are positive, the strict lower triangle of L will be held in the first $n_z(n_z-1)/2$ elements of options.hesl and the diagonal elements of D in the first n_z elements of options.hesd.

If options.init_state = Nag_Init_None (the default), options.hesl and options.hesd will be initialized within nag_opt_bounds_deriv (e04kbc) to the factors of the unit matrix.

If you set options.init_state = Nag_Init_F_G_H, options.hesd[$j-1$] must contain on entry an approximation to the second derivative with respect to x_j, for $j = 1, 2, \ldots, n$. options.hesl need not be set.

If options.init_state = Nag_Init_All or Nag_Init_H_S, options.hesl and options.hesd must contain on entry the Cholesky factors of a positive definite approximation to the n_z by n_z matrix of second derivatives for the subspace of free variables as specified by your setting of options.state.

On exit: options.hesl and options.hesd hold the factors L and D corresponding to the final point given in x. The elements of options.hesd are useful for deciding whether to accept the result produced by nag_opt_bounds_deriv (e04kbc) (see Section 9).

iter – Integer

On exit: the number of iterations which have been performed in nag_opt_bounds_deriv (e04kbc).

nf – Integer

On exit: the number of times the residuals have been evaluated (i.e., number of calls of objfun).

11.3 Description of Printed Output

The level of printed output can be controlled with the structure members options.list and options.print_level (see Section 11.2). If options.list = Nag_TRUE then the argument values to nag_opt_bounds_deriv (e04kbc) are listed, whereas the printout of results is governed by the value of options.print_level. The default of options.print_level = Nag_Soln_Iter provides a single line of output at each iteration and the final result. This section describes all of the possible levels of results printout available from nag_opt_bounds_deriv (e04kbc).

When options.print_level = Nag_Iter or Nag_Soln_Iter a single line of output is produced on completion of each iteration, this gives the following values:

- Itn: the iteration count, k.
- Nfun: the cumulative number of calls to objfun.
- Objective: the current value of the objective function, $F(x(k))$.
- Norm g: the Euclidean norm of the projected gradient vector, $\|g_k(x(k))\|$.
- Norm x: the Euclidean norm of $x(k)$.
- Norm(x(k-1)-x(k)): the Euclidean norm of $x(k-1) - x(k)$.
- Step: the step $\alpha(k)$ taken along the computed search direction $p(k)$.
- Cond H: the ratio of the largest to the smallest element of the diagonal factor D of the projected Hessian matrix. This quantity is usually a good estimate of the condition number of the projected Hessian matrix. (If no variables are currently free, this value will be zero.)

When options.print_level = Nag_Soln_Iter_Full more detailed results are given at each iteration. Additional values output are:

- x: the current point $x(k)$.
- g: the current projected gradient vector, $g_k(x(k))$.
- Status: the current state of the variable with respect to its bound(s).

If options.print_level = Nag_Soln, Nag_Soln_Iter or Nag_Soln_Iter_Full the final result is printed out. This consists of:
the final point, \(x^* \).
g the final projected gradient vector, \(g_z(x^*) \).
Status the final state of the variable with respect to its bound(s).

If `options.print_level = Nag_NoPrint` then printout will be suppressed; you can print the final solution when `nag_opt_bounds_deriv (e04kbc)` returns to the calling program.

11.3.1 Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by use of the `options.print_fun` function pointer, which has prototype

The rest of this section can be skipped if the default printing facilities provide the required functionality.

When a user-defined function is assigned to `options.print_fun` this will be called in preference to the internal print function of `nag_opt_bounds_deriv (e04kbc)`. Calls to the user-defined function are again controlled by means of the `options.print_level` member. Information is provided through `st` and `comm`, the two structure arguments to `options.print_fun`.

The results contained in the members of `st` are those on completion of the last iteration or those after a local search. (An iteration may be followed by a local search (see `options.local_search`, Section 11.2) in which case `options.print_fun` is called with the results of the last iteration (`st->local_search = Nag_FALSE`) and then again when the local search has been completed (`st->local_search = Nag_TRUE`).)

If `comm->it_prt = Nag_TRUE` then the results on completion of an iteration of `nag_opt_bounds_deriv (e04kbc)` are contained in the members of `st`. If `comm->sol_prt = Nag_TRUE` then the final results from `nag_opt_bounds_deriv (e04kbc)`, including details of the final iteration, are contained in the members of `st`. In both cases, the same members of `st` are set, as follows:

- **iter** – Integer
 The current iteration count, \(k \), if `comm->it_prt = Nag_TRUE`; the final iteration count, \(k \), if `comm->sol_prt = Nag_TRUE`.

- **n** – Integer
 The number of variables.

- **x** – double *
 The coordinates of the point \(x^{(k)} \).

- **f** – double *
 The value of the current objective function.

- **g** – double *
 Points to the \(n \) memory locations holding the first derivatives of \(F \) at the current point \(x^{(k)} \).

- **gpj_norm** – double *
 The Euclidean norm of the current projected gradient \(g_z \).

- **step** – double *
 The step \(\alpha^{(k)} \) taken along the search direction \(p^{(k)} \).

- **cond** – double *
 The estimate of the condition number of the Hessian matrix.

- **xk_norm** – double *
 The Euclidean norm of \(x^{(k-1)} - x^{(k)} \).
state – Integer
The status of variables x_j, $j = 1, 2, \ldots, n$, with respect to their bounds. See Section 3 for a description of the possible status values.

local_search – Nag_Boolean
Nag_TRUE if a local search has been performed.

nf – Integer
The cumulative number of calls made to objfun.

The relevant members of the structure comm are:

it_prt – Nag_Boolean
Will be Nag_TRUE when the print function is called with the results of the current iteration.

sol_prt – Nag_Boolean
Will be Nag_TRUE when the print function is called with the final result.

user – double *
iuser – Integer *
p – Pointer
Pointers for communication of user information. If used they must be allocated memory either before entry to nag_opt_bounds_deriv (e04kbc) or during a call to objfun or options.print_fun. The type Pointer will be void * with a C compiler that defines void * and char * otherwise.