NAG Library Function Document

nag_opt_lsq_no_deriv (e04fcc)

1 Purpose

nag_opt_lsq_no_deriv (e04fcc) is a comprehensive algorithm for finding an unconstrained minimum of a sum of squares of \(m \) nonlinear functions in \(n \) variables (\(m \geq n \)). No derivatives are required.

nag_opt_lsq_no_deriv (e04fcc) is intended for objective functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

```c
#include <nag.h>
#include <nage04.h>

void nag_opt_lsq_no_deriv (Integer m, Integer n,
    void (*lsqfun)(Integer m, Integer n, const double x[], double fvec[],
                   Nag_Comm *comm),
    double x[], double *fsumsq, double fvec[], double fjac[],
    Integer tdfjac, Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)
```

3 Description

nag_opt_lsq_no_deriv (e04fcc) is applicable to problems of the form:

\[
\text{Minimize } F(x) = \sum_{i=1}^{m} |f_i(x)|^2
\]

where \(x = (x_1, x_2, \ldots, x_n)^T \) and \(m \geq n \). (The functions \(f_i(x) \) are often referred to as ‘residuals’.) You must supply a C function, `lsqfun`, to calculate the values of the \(f_i(x) \) at any point \(x \).

From a starting point \(x^{(1)} \) nag_opt_lsq_no_deriv (e04fcc) generates a sequence of points \(x^{(2)}, x^{(3)}, \ldots, \) which is intended to converge to a local minimum of \(F(x) \). The sequence of points is given by

\[
x^{(k+1)} = x^{(k)} + \alpha^{(k)} p^{(k)}
\]

where the vector \(p^{(k)} \) is a direction of search, and \(\alpha^{(k)} \) is chosen such that \(F(x^{(k)} + \alpha^{(k)} p^{(k)}) \) is approximately a minimum with respect to \(\alpha^{(k)} \).

The vector \(p^{(k)} \) used depends upon the reduction in the sum of squares obtained during the last iteration. If the sum of squares was sufficiently reduced, then \(p^{(k)} \) is an approximation to the Gauss–Newton direction; otherwise additional function evaluations are made so as to enable \(p^{(k)} \) to be a more accurate approximation to the Newton direction.

The method is designed to ensure that steady progress is made whatever the starting point, and to have the rapid ultimate convergence of Newton’s method.

4 References

5 Arguments

1: m – Integer
 On entry: m, the number of residuals, \(f_i(x) \).

2: n – Integer
 On entry: n, the number of variables, \(x_j \).
 Constraint: \(1 \leq n \leq m \).

3: lsqfun – function, supplied by the user
 External Function

 \(\text{lsqfun} \) must calculate the vector of values \(f_i(x) \) at any point \(x \). (However, if you do not wish to calculate the residuals at a particular \(x \), there is the option of setting an argument to cause \(\text{nag_opt_lsq_no_deriv (e04fcc)} \) to terminate immediately.)

 The specification of \(\text{lsqfun} \) is:

   ```c
   void lsqfun (Integer m, Integer n, const double x[], double fvec[], 
                Nag_Comm *comm)
   ```

 1: m – Integer
 2: n – Integer
 On entry: the numbers \(m \) and \(n \) of residuals and variables, respectively.

 3: x[n] – const double
 On entry: the point \(x \) at which the values of the \(f_i \) are required.

 4: fvec[m] – double
 On exit: unless \(\text{comm} \rightarrow \text{flag} \) is reset to a negative number, on exit \(\text{fvec}[i-1] \) must contain the value of \(f_i \) at the point \(x \), for \(i = 1, 2, \ldots, m \).

 5: comm – Nag_Comm *
 Pointer to structure of type Nag_Comm; the following members are relevant to \(\text{lsqfun} \).

 flag – Integer
 Input/Output
 On entry: \(\text{comm} \rightarrow \text{flag} \) contains a non-negative number.
 On exit: if \(\text{lsqfun} \) resets \(\text{comm} \rightarrow \text{flag} \) to some negative number then \(\text{nag_opt_lsq_no_deriv (e04fcc)} \) will terminate immediately with the error indicator NE_USER_STOP. If \(\text{fail} \) is supplied to \(\text{nag_opt_lsq_no_deriv (e04fcc)} \), \(\text{fail.errnum} \) will be set to the user’s setting of \(\text{comm} \rightarrow \text{flag} \).

 first – Nag_Boolean
 Input
 On entry: the value Nag_TRUE on the first call to \(\text{lsqfun} \) and Nag_FALSE for all subsequent calls.

 nf – Integer
 Input
 On entry: the number of calls made to \(\text{lsqfun} \) including the current one.

 user – double *
 iuser – Integer *
 p – Pointer
 The type Pointer will be \(\text{void} * \) with a C compiler that defines \(\text{void} * \) and \(\text{char} * \) otherwise. Before calling \(\text{nag_opt_lsq_no_deriv (e04fcc)} \) these pointers may be allocated memory and initialized with various quantities for use by \(\text{lsqfun} \) when called from \(\text{nag_opt_lsq_no_deriv (e04fcc)} \).
Note: **lsqfun** should be tested separately before being used in conjunction with **nag_opt_lsq_no_deriv (e04fcc)**. The array **x** must not be changed within **lsqfun**.

4: **x[n]** – double

Input/Output

On entry: **x[j]** must be set to a guess at the jth component of the position of the minimum, for

\[j = 1, 2, \ldots, n. \]

On exit: the final point \(x^*\). On successful exit, **x[j]** is the jth component of the estimated position of the minimum.

5: **fsumsq** – double *

Output

On exit: the value of \(F(x)\), the sum of squares of the residuals \(f_i(x)\), at the final point given in **x**.

6: **fvec[m]** – double

Output

On exit: **fvec[i]** is the value of the residual \(f_i(x)\) at the final point given in **x**, for

\[i = 1, 2, \ldots, m. \]

7: **fjac[m × tdfjac]** – double

Output

On exit: **fjac[(i × tdfjac) + j]** contains the estimate of the first derivative \(\frac{\partial f_i}{\partial x_j}\) at the final point given in **x**, for \(i = 1, 2, \ldots, m\) and \(j = 1, 2, \ldots, n\).

8: **tdfjac** – Integer

Input

Constraint: **tdfjac \geq n.**

9: **options** – Nag_E04_Opt *

Input/Output

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional arguments for **nag_opt_lsq_no_deriv (e04fcc)**. These structure members offer the means of adjusting some of the argument values of the algorithm and on output will supply further details of the results. A description of the members of **options** is given in Section 11.2.

If any of these optional arguments are required then the structure **options** should be declared and initialized by a call to **nag_opt_init (e04xxc)** and supplied as an argument to **nag_opt_lsq_no_deriv (e04fcc)**. However, if the optional arguments are not required the NAG defined null pointer, **E04_DEFAULT**, can be used in the function call.

10: **comm** – Nag_Comm *

Input/Output

Note: **comm** is a NAG defined type (see Section 3.2.1.1 in the Essential Introduction).

On entry/exit: structure containing pointers for communication to user-supplied functions; see the above description of **lsqfun** for details. If you do not need to make use of this communication feature the null pointer **NAGCOMM_NULL** may be used in the call to **nag_opt_lsq_no_deriv (e04fcc)**; **comm** will then be declared internally for use in calls to user-supplied functions.

11: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

5.1 Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled with the option **options.print_level** (see Section 11.2). The default, **options.print_level = Nag_Soln_Iter**, provides a single line of output at each iteration and the final result. The line of results printed at each iteration gives:
Itn the current iteration number \(k \).
Nfun the cumulative number of calls to \texttt{lsqfun}.
Objective the current value of the objective function, \(F(x^{(k)}) \).
Norm g the Euclidean norm of the gradient of \(F(x^{(k)}) \).
Norm x the Euclidean norm of \(x^{(k)} \).
Norm(x(k−1)−x(k)) the Euclidean norm of \(x^{(k−1)} − x^{(k)} \).
Step the step \(\alpha^{(k)} \) taken along the computed search direction \(p^{(k)} \).

The printout of the final result consists of:

- **x** the final point \(x^* \).
- **g** the estimate of the gradient of \(F \) at the final point.
- **Residuals** the values of the residuals \(f_i \) at the final point.
- **Sum of squares** the value of \(F(x^*) \), the sum of squares of the residuals at the final point.

6 Error Indicators and Warnings

If one of NE_USER_STOP, NE_2_INT_ARG_LT, NE_OPT_NOT_INIT, NE_BAD_PARAM, NE_2_REAL_ARG_LT, NE_BAD_PARAM, NE_2_REAL_ARG_LT, NE_ALLOC_FAIL, or to the elements of \(\texttt{fvec} \), \(\texttt{fjac} \), \(\texttt{options.s} \) or \(\texttt{options.v} \).

The exits NW_TOO_MANY_ITER, NW_COND_MIN, and NE_SVD_FAIL may also be caused by mistakes in \texttt{lsqfun}, by the formulation of the problem or by an awkward function. If there are no such mistakes it is worth restarting the calculations from a different starting point (not the point at which the failure occurred) in order to avoid the region which caused the failure.

NE_2_INT_ARG_LT

On entry, \(m = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(m \geq n \).

On entry, \(\text{options.tdv} = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(\text{options.tdv} \geq n \).

On entry, \(\text{tdfjac} = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdfjac} \geq n \).

NE_2_REAL_ARG_LT

On entry, \(\text{options.step.max} = \langle \text{value} \rangle \) while \(\text{options.optim.tol} = \langle \text{value} \rangle \). These arguments must satisfy \(\text{options.step.max} \geq \text{options.optim.tol} \).

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument \(\text{options.print.level} \) had an illegal value.

NE_INT_ARG_LT

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 1 \).
NE_INVALID_INT_RANGE_1
Value \(\text{(value)}\) given to options.max_iter not valid. Correct range is \(\text{options.max_iter} \geq 0\).

NE_INVALID_REAL_RANGE_EF
Value \(\text{(value)}\) given to options.optim_tol not valid. Correct range is \(\text{(value)} \leq \text{options.optim_tol} < 1.0\).

NE_INVALID_REAL_RANGE_FF
Value \(\text{(value)}\) given to options.linesearch_tol not valid. Correct range is \(0.0 \leq \text{options.linesearch_tol} < 1.0\).

NE_NOT_APPEND_FILE
Cannot open file \(\text{(string)}\) for appending.

NE_NOT_CLOSE_FILE
Cannot close file \(\text{(string)}\).

NE_OPT_NOT_INIT
Options structure not initialized.

NE_SVD_FAIL
The computation of the singular value decomposition of the Jacobian matrix has failed to converge in a reasonable number of sub-iterations.
It may be worth applying nag_opt_lsq_no_deriv (e04fcc) again starting with an initial approximation which is not too close to the point at which the failure occurred.

NE_USER_STOP
User requested termination, user flag value = \(\text{(value)}\).
This exit occurs if you set \text{comm}→\text{flag} to a negative value in lsqfun. If fail is supplied the value of fail.errnum will be the same as your setting of \text{comm}→\text{flag}.

NE_WRITE_ERROR
Error occurred when writing to file \(\text{(string)}\).

NW_COND_MIN
The conditions for a minimum have not all been satisfied, but a lower point could not be found.
This could be because \text{options.optim_tol} has been set so small that rounding errors in the evaluation of the residuals make attainment of the convergence conditions impossible.

NW_TOO_MANY_ITER
The maximum number of iterations, \(\text{(value)}\), have been performed.
If steady reductions in the sum of squares, \(F(x)\), were monitored up to the point where this exit occurred, then the exit probably occurred simply because \text{options.max_iter} was set too small, so the calculations should be restarted from the final point held in \text{x}. This exit may also indicate that \(F(x)\) has no minimum.
7 Accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a mantissa of \(t \) decimals, one would expect to get about \(\frac{t}{2} \) decimals accuracy in the components of \(x \) and between \(\frac{t}{2} \) (if \(F(x) \) is of order 1 at the minimum) and \(2t - 2 \) (if \(F(x) \) is close to zero at the minimum) decimals accuracy in \(F(x) \).

A successful exit (NE_NOERROR) is made from nag_opt_lsq_no_deriv (e04fcc) when (B1, B2 and B3) or B4 or B5 hold, where

- \(B1 \equiv \alpha(k) \leq (\text{options.optim_tol} + \epsilon) \times (\|x^{(k)}\|) \)
- \(B2 \equiv |F^{(k)} - F^{(k-1)}| < (\text{options.optim_tol} + \epsilon)^2 \times (1.0 + F^{(k)}) \)
- \(B3 \equiv \|g^{(k)}\| < (\epsilon^{1/2} + \text{options.optim_tol}) \times (1.0 + F^{(k)}) \)
- \(B4 \equiv F^{(k)} < \epsilon^2 \)
- \(B5 \equiv \|g^{(k)}\| < \left(\epsilon \times \sqrt{F^{(k)}} \right)^{1/2} \)

and where \(\|\cdot\| \), \(\epsilon \) and the optional argument \(\text{options.optim_tol} \) are as defined in Section 11.2, while \(F^{(k)} \) and \(g^{(k)} \) are the values of \(F(x) \) and its vector of estimated first derivatives at \(x^{(k)} \).

If \(\text{fail.code} = \text{NE_NOERROR} \) then the vector in \(x \) on exit, \(x_{sol} \), is almost certainly an estimate of \(x_{true} \), the position of the minimum to the accuracy specified by \(\text{options.optim_tol} \).

If \(\text{fail.code} = \text{NW_COND_MIN} \), then \(x_{sol} \) may still be a good estimate of \(x_{true} \), but to verify this you should make the following checks. If

- (a) the sequence \(\{F(x^{(k)})\} \) converges to \(F(x_{sol}) \) at a superlinear or a fast linear rate, and
- (b) \(g(x_{sol})^T g(x_{sol}) < 10\epsilon \),

where \(\text{T} \) denotes transpose, then it is almost certain that \(x_{sol} \) is a close approximation to the minimum. When (b) is true, then usually \(F(x_{sol}) \) is a close approximation to \(F(x_{true}) \).

Further suggestions about confirmation of a computed solution are given in the e04 Chapter Introduction.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the behaviour of \(F(x) \), the accuracy demanded and the distance of the starting point from the solution. The number of multiplications performed per iteration of nag_opt_lsq_no_deriv (e04fcc) varies, but for \(m > > n \) is approximately \(n \times m^2 + O(n^3) \). In addition, each iteration makes at least \(n + 1 \) calls of \text{lqfun}. So, unless the residuals can be evaluated very quickly, the run time will be dominated by the time spent in \text{lqfun}.

Ideally, the problem should be scaled so that, at the solution, \(F(x) \) and the corresponding values of the \(x_j \) are each in the range \((-1, +1)\), and so that at points one unit away from the solution, \(F(x) \) differs from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix of \(F(x) \) at the solution is well-conditioned. It is unlikely that you will be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the minimization problem, so that nag_opt_lsq_no_deriv (e04fcc) will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements of the variance-covariance matrix of the estimated regression coefficients can be computed by a subsequent call to nag_opt_lsq_covariance (e04ycc), using information returned in the arrays \text{options.s} and \text{options.v}. See nag_opt_lsq_covariance (e04ycc) for further details.
10 Example

This example shows option values being assigned directly within the program text and by reading values from a data file. The options structure is declared and initialized by nag_opt_init (e04xzc). Values are then assigned directly to options options.outfile and options.optim_tol and two further options are read from the data file by use of nag_opt_read (e04xyc). The memory freeing function nag_opt_free (e04xzc) is used to free the memory assigned to the pointers in the option structure. You must not use the standard C function free() for this purpose.

10.1 Program Text

/* nag_opt_lsq_no_deriv (e04fcc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 7 revised, 2001.
 */
#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <math.h>
#include "nage04.h"
#include "nagx02.h"

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL lsqfun(Integer m, Integer n, const double x[],
 double fvec[], Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
#define MMAX 15
#define TMAX 3
/* Define a user structure template to store data in lsqfun. */
struct user
{
 double y[MMAX];
 double t[MMAX][TMAX];
};
int main(void)
{
 const char *optionsfile = "e04fcce.opt";
 Integer exit_status = 0;
 Nag_Boolean print;
 Integer i, j, m, n, nt, tdfjac;
 Nag_Comm comm;
 Nag_E04_Opt options;
 double *fjac = 0, fsumsq, *fvec = 0, *x = 0;
 struct user s;
 NagError fail;
 INIT_FAIL(fail);
 printf("nag_opt_lsq_no_deriv (e04fcc) Example Program Results\n");
 fflush(stdout);
#ifdef _WIN32
 scanf_s(" %*\n"); /* Skip heading in data file */
#else
 scanf(" %*\n"); /* Skip heading in data file */
#endif
n = 3;
m = 15;
if (m >= 1 && n <= m) {
 if (!fjac = NAG_ALLOC(m*n, double)) ||
 !fvec = NAG_ALLOC(m, double)) ||
 !x = NAG_ALLOC(n, double))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 tdfjac = n;
} else {
 printf("Invalid m or n.\n");
 exit_status = 1;
 return exit_status;
}

/* Read data into structure. * Observations t (j = 0, 1, 2) are held in s->t[i][j] * (i = 0, 1, 2, . . ., 14) */
nt = 3;
for (i = 0; i < m; ++i) {
 #ifdef _WIN32
 scanf_s("%lf", &s.y[i]);
 #else
 scanf("%lf", &s.y[i]);
 #endif
 #ifdef _WIN32
 for (j = 0; j < nt; ++j) scanf_s("%lf", &s.t[i][j]);
 #else
 for (j = 0; j < nt; ++j) scanf("%lf", &s.t[i][j]);
 #endif
}

/* Set up the starting point */
x[0] = 0.5;
x[1] = 1.0;
x[2] = 1.5;

/* nag_opt_init (e04xc). * Initialization function for option setting */
nag_opt_init(&options); /* Initialise options structure */
/* Set one option directly. */
/* nag_machine_precision (x02ajc). * The machine precision */
options.optim_tol = 10.0*sqrt(nag_machine_precision);

/* Read remaining option values from file */
print = Nag_FALSE;
/* nag_opt_read (e04xic). * Read options from a text file */
nag_opt_read("e04fcc", optionsfile, &options, print, "stdout", &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_opt_read (e04xic).\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Assign address of user defined structure to * comm.p for communication to lsqfun(). */
comm.p = (Pointer)&s;

/* nag_opt_lsq_no_deriv (e04fcc), see above. */

nag_opt_lsq_no_deriv(m, n, lsqfun, x, &fsumsq, fvec, fjac, tdfjac,
 &options, &comm, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error/Warning from nag_opt_lsq_no_deriv (e04fcc).\n%s\n", fail.message);
 if (fail.code != NW_COND_MIN)
 exit_status = 1;
}

/* Free memory allocated to pointers s and v */

/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "all", &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
 exit_status = 2;
 goto END;
}

END:

NAG_FREE(fjac);
NAG_FREE(fvec);
NAG_FREE(x);

return exit_status;

static void NAG_CALL lsqfun(Integer m, Integer n, const double x[],
 double fvec[], Nag_Comm *comm)
{
 /* Function to evaluate the residuals.
 * To avoid the use of a global variabale this example assigns the address
 * of a user defined structure to comm.p in the main program (where the
 * data was also read in).
 * The address of this structure is recovered in each call to lsqfun()
 * from comm->p and the structure used in the calculation of the residuals.
 */

 Integer i;
 struct user *s = (struct user *) comm->p;

 for (i = 0; i < m; ++i)
 fvec[i] = x[0] + s->t[i][0] / (x[1]*s->t[i][1] + x[2]*s->t[i][2]) - s->y[i];
}

10.2 Program Data

nag_opt_lsq_no_deriv (e04fcc) Example Program Data

0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
nag_opt_lsq_no_deriv (e04fcc) Example Program Optional Parameters

Following optional parameter settings are read by e04xyc

begin e04fcc
/* Results printout set to fullest detail */
print_level = Nag_Soln_Iter_Full

/* Estimate minimum will be within 10 units of the
* starting point. */
step_max = 10.0

end

10.3 Program Results

nag_opt_lsq_no_deriv (e04fcc) Example Program Results

Parameters to e04fcc

Number of residuals........... 15 Number of variables........... 3
optim_tol............... 1.05e-07 linesearch_tol........... 5.00e-01
step_max................ 1.00e+01 max_iter................ 50
print_level.... Nag_Soln_Iter_Full machine precision....... 1.11e-16
outfile................. stdout

Memory allocation:
s....................... Nag v....................... Nag tdv..................... 3

Results from e04fcc:

Iteration results:

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm (x(k-1)-x(k))</th>
<th>Step</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>1.0210e+01</td>
<td>3.2e+01</td>
<td>1.9e+00</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Singular values</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.00000e-01</td>
<td>2.1202e+01</td>
<td>4.9542e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00000e+00</td>
<td>-1.6838e+01</td>
<td>2.5672e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50000e+00</td>
<td>-1.6353e+01</td>
<td>9.6486e-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1.9873e-01</td>
<td>2.8e+00</td>
<td>2.4e+00</td>
<td>7.2e-01</td>
<td>1.0e+00</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Singular values</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.24763e-02</td>
<td>1.8825e+00</td>
<td>4.1973e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.13575e+00</td>
<td>-1.5133e+00</td>
<td>1.8396e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.06664e+00</td>
<td>-1.5073e+00</td>
<td>6.6356e-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>9.2324e-03</td>
<td>1.9e-03</td>
<td>2.6e+00</td>
<td>2.5e-01</td>
<td>1.0e+00</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Singular values</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.24402e-02</td>
<td>1.3523e-01</td>
<td>4.1026e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.13805e+00</td>
<td>-9.4890e-02</td>
<td>1.6131e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.31707e+00</td>
<td>-9.4630e-02</td>
<td>6.1372e-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>8.2149e-03</td>
<td>1.2e-03</td>
<td>2.6e+00</td>
<td>2.7e-02</td>
<td>1.0e+00</td>
<td>3</td>
</tr>
</tbody>
</table>
Final solution:

\[
\begin{align*}
8.24106e-02 & \quad 2.3856e-09 & \quad -5.8811e-03 \\
1.13304e+00 & \quad -1.2799e-09 & \quad -1.2995e-03 \\
2.34370e+00 & \quad -1.1286e-09 & \quad 6.8079e-03
\end{align*}
\]

The sum of squares is 8.2149e-03.

11 Optional Arguments

A number of optional input and output arguments to nag_opt_lsq_no_deriv (e04fcc) are available through the structure argument options, type Nag_E04_Opt. An argument may be selected by assigning an appropriate value to the relevant structure member; those arguments not selected will be assigned default values. If no use is to be made of any of the optional arguments you should use the NAG defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_lsq_no_deriv (e04fcc); the default settings will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case initialization of the options structure will be performed automatically if not already done. Any subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, this must be done directly in the calling program, they cannot be assigned using nag_opt_read (e04xyc).

11.1 Optional Argument Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_lsq_no_deriv (e04fcc) together with their default values where relevant. The number \(\epsilon \) is a generic notation for machine precision (see nag_machine_precision (X02AJC)).
Boolean list Nag_TRUE
Nag_PrintType print_level Nag_Soln_Iter
char outfile[80] stdout
void (*print_fun)() NULL
Integer max_iter max(50, 5n)
double optim_tol \(\sqrt{\varepsilon} \)
double linesearch_tol 0.5 (0.0 if \(n = 1 \))
double step_max 100000.0
double *s size \(n \)
double *v size \(n \times n \)
Integer tdv \(n \)
Integer grade
Integer iter
Integer nf

11.2 Description of the Optional Arguments

list – Nag_Boolean

On entry: if \texttt{options.list} = Nag_TRUE the argument settings in the call to \texttt{nag_opt_lsq_no_deriv} (e04fcc) will be printed.

print_level – Nag_PrintType

On entry: the level of results printout produced by \texttt{nag_opt_lsq_no_deriv} (e04fcc). The following values are available:

- Nag_NoPrint No output.
- Nag_Soln The final solution.
- Nag_Iter One line of output for each iteration.
- Nag_Soln_Iter The final solution and one line of output for each iteration.
- Nag_Soln_Iter_Full The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 9.

Constraint: \texttt{options.print_level} = Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter or Nag_Soln_Iter_Full.

outfile – const char[80]

On entry: the name of the file to which results should be printed. If \texttt{options.outfile}[0] = '\0' then the stdout stream is used.

print_fun – pointer to function

On entry: printing function defined by you; the prototype of \texttt{options.print_fun} is

\[
\text{void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);}
\]

See Section 9 for further details.

max_iter – Integer

On entry: the limit on the number of iterations allowed before termination.

Constraint: \texttt{options.max_iter} \(\geq 0 \).

optim_tol – double

On entry: the accuracy in \(x \) to which the solution is required. If \(x_{\text{true}} \) is the true value of \(x \) at the minimum, then \(x_{\text{sol}} \), the estimated position prior to a normal exit, is such that

\[
\| x_{\text{sol}} - x_{\text{true}} \| < \text{options.optim_tol} \times (1.0 + \| x_{\text{true}} \|),
\]

\(e04fcc.12 \)

Mark 25
where \(\|y\| = \left(\sum_{j=1}^{n} y_j^2 \right)^{1/2} \). For example, if the elements of \(x_{sol} \) are not much larger than 1.0 in modulus and if \(\text{options.optim_tol} = 1.0 \times 10^{-5} \), then \(x_{sol} \) is usually accurate to about 5 decimal places. (For further details see Section 9.) If \(F(x) \) and the variables are scaled roughly as described in Section 9 and \(\epsilon \) is the machine precision, then a setting of order \(\text{options.optim_tol} = \sqrt{\epsilon} \) will usually be appropriate.

Constraint: \(10\epsilon \leq \text{options.optim_tol} < 1.0 \).

linesearch.tol – double

Default = 0.5. (If \(n = 1 \), default = 0.0)

On entry: every iteration of nag_opt_lsq_no_deriv (e04fcc) involves a linear minimization, i.e., minimization of \(F(x(k) + \alpha(k)p(k)) \) with respect to \(\alpha(k) \). \(\text{options.linesearch.tol} \) specifies how accurately the linear minimizations are to be performed. The minimum with respect to \(\alpha(k) \) will be located more accurately for small values of \(\text{options.linesearch.tol} \) (say 0.01) than for large values (say 0.9). Although accurate linear minimizations will generally reduce the number of iterations performed by nag_opt_lsq_no_deriv (e04fcc), they will increase the number of calls of \(\text{lsqfun} \) made each iteration.

On balance it is usually more efficient to perform a low accuracy minimization.

Constraint: \(0.0 \leq \text{options.linesearch.tol} < 1.0 \).

step.max – double

Default = 100000.0

On entry: an estimate of the Euclidean distance between the solution and the starting point supplied. (For maximum efficiency, a slight overestimate is preferable.) nag_opt_lsq_no_deriv (e04fcc) will ensure that, for each iteration,

\[
\sum_{j=1}^{n} \left(x_j^{(k)} - x_j^{(k-1)} \right)^2 \leq (\text{options.step.max})^2
\]

where \(k \) is the iteration number. Thus, if the problem has more than one solution, nag_opt_lsq_no_deriv (e04fcc) is most likely to find the one nearest to the starting point. On difficult problems, a realistic choice can prevent the sequence \(x^{(k)} \) entering a region where the problem is ill-behaved and can help avoid overflow in the evaluation of \(F(x) \). However, an underestimate of \(\text{options.step.max} \) can lead to inefficiency.

Constraint: \(\text{options.step.max} \geq \text{options.optim_tol} \).

s – double *

Default memory = \(n \)

On entry: \(n \) values of memory will be automatically allocated by nag_opt_lsq_no_deriv (e04fcc) and this is the recommended method of use of \(\text{options.s} \). However you may supply memory from the calling program.

On exit: the singular values of the estimated Jacobian matrix at the final point. Thus \(\text{options.s} \) may be useful as information about the structure of your problem.

v – double *

Default memory = \(n \times n \)

On entry: \(n \times n \) values of memory will be automatically allocated by nag_opt_lsq_no_deriv (e04fcc) and this is the recommended method of use of \(\text{options.v} \). However you may supply memory from the calling program.

On exit: the matrix \(V \) associated with the singular value decomposition

\[J = USV^T \]

of the estimated Jacobian matrix at the final point, stored by rows. This matrix may be useful for statistical purposes, since it is the matrix of orthonormalized eigenvectors of \(J^TJ \).

tdv – Integer

Default = \(n \)

On entry: if memory is supplied then \(\text{options.tdv} \) must contain the last dimension of the array assigned to \(\text{options.tdv} \) as declared in the function from which nag_opt_lsq_no_deriv (e04fcc) is called.
On exit: the trailing dimension used by options. v. If the Nag default memory allocation has been used this value will be n.

Constraint: options.tdv ≥ n.

grade – Integer

On exit: the grade of the Jacobian at the final point. nag_opt_lsq_no_deriv (e04fcc) estimates the dimension of the subspace for which the Jacobian matrix can be used as a valid approximation to the curvature (see Gill and Murray (1978)); this estimate is called the grade.

iter – Integer

On exit: the number of iterations which have been performed in nag_opt_lsq_no_deriv (e04fcc).

nf – Integer

On exit: the number of times the residuals have been evaluated (i.e., number of calls of lsqfun).

11.3 Description of Printed Output

The level of printed output can be controlled with the structure members options.list and options.print_level (see Section 11.2). If options.list = Nag_TRUE then the argument values to nag_opt_lsq_no_deriv (e04fcc) are listed, whereas the printout of results is governed by the value of options.print_level. The default of options.print_level = Nag_Soln_Iter provides a single line of output at each iteration and the final result. This section describes all of the possible levels of results printout available from nag_opt_lsq_no_deriv (e04fcc).

When options.print_level = Nag_Iter or Nag_Soln_Iter a single line of output is produced on completion of each iteration, this gives the following values:

- Itn: the current iteration number k.
- Nfun: the cumulative number of calls to lsqfun.
- Objective: the value of the objective function, F(x(k)).
- Norm g: the Euclidean norm of the gradient of F(x(k)).
- Norm x: the Euclidean norm of x(k).
- Norm(x(k-1)-x(k)): the Euclidean norm of x(k-1) - x(k).
- Step: the step α(k) taken along the computed search direction p(k).

When options.print_level = Nag_Soln or Nag_Soln_Iter_Full more detailed results are given at each iteration. Additional values output are:

- Grade: the grade of the Jacobian matrix. (See description of options.grade, Section 11.2
- x: the current point x(k).
- g: the current estimate of the gradient of F(x(k)).
- Singular values: the singular values of the current approximation to the Jacobian matrix.

If options.print_level = Nag_Soln, Nag_Soln_Iter or Nag_Soln_Iter_Full the final result is printed out. This consists of:

- x: the final point x*.
- g: the estimate of the gradient of F at the final point.
- Sum of squares: the value of F(x*), the sum of squares of the residuals at the final point.
If `options.print_level = Nag_NoPrint` then printout will be suppressed; you can print the final solution when `nag_opt_lsq_no_deriv (e04fcc)` returns to the calling program.

11.3.1 Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by use of the `options.print_fun` function pointer, which has prototype

```c
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);
```

The rest of this section can be skipped if the default printing facilities provide the required functionality.

When a user-defined function is assigned to `options.print_fun` this will be called in preference to the internal print function of `nag_opt_lsq_no_deriv (e04fcc)`. Calls to the user-defined function are again controlled by means of the `options.print_level` member. Information is provided through the two structure arguments to `options.print_fun`. If `comm.it prt = Nag_TRUE` then the results from the last iteration of `nag_opt_lsq_no_deriv (e04fcc)` are in the following members of `st`:

- **m** – `Integer`
 The number of residuals.

- **n** – `Integer`
 The number of variables.

- **x** – `double *`
 Points to the `st->n` memory locations holding the current point \(x^{(b)}\).

- **fvec** – `double *`
 Points to the `st->m` memory locations holding the values of the residuals \(f_i\) at the current point \(x^{(k)}\).

- **fjac** – `double *`
 Points to the `st->m` memory locations holding the values of the residuals \(f_i\) at the current point \(x^{(k)}\).

- **tdj** – `Integer`
 The trailing dimension for `st->fjac`.

- **step** – `double`
 The step \(\alpha^{(k)}\) taken along the search direction \(p^{(k)}\).

- **xk_norm** – `double`
 The Euclidean norm of \(x^{(k-1)} - x^{(k)}\).

- **g** – `double *`
 Points to the `st->n` memory locations holding the estimated gradient of \(F\) at the current point \(x^{(k)}\).

- **grade** – `Integer`
 The grade of the Jacobian matrix.

- **s** – `double *`
 Points to the `st->n` memory locations holding the singular values of the current approximation to the Jacobian.

- **iter** – `Integer`
 The number of iterations, \(k\), performed by `nag_opt_lsq_no_deriv (e04fcc)`.
nf – Integer

The cumulative number of calls made to \textit{lsqfun}.

The relevant members of the structure \textit{comm} are:

\textbf{it_prt} – Nag_Boolean

Will be Nag_TRUE when the print function is called with the result of the current iteration.

\textbf{sol_prt} – Nag_Boolean

Will be Nag_TRUE when the print function is called with the final result.

\textbf{user} – double *
\textbf{iuser} – Integer *
\textbf{p} – Pointer

Pointers for communication of user information. If used they must be allocated memory either before entry to \texttt{nag_opt_lsq_no_deriv (e04fcc)} or during a call to \texttt{lsqfun} or \texttt{options.print_fun}. The type Pointer will be \texttt{void *} with a C compiler that defines \texttt{void *} and \texttt{char *} otherwise.