

1 Purpose

nag_2d_spline_ts_eval(e02jec) calculates a vector of values of a spline computed by nag_2d_spline_fit_ts_scat(e02jdc).

2 Specification

```c
#include <nag.h>
#include <nage02.h>
void nag_2d_spline_ts_eval (Integer nevalv, const double xevalv[],
                          const double yevalv[], const double coefs[],
                          double fevalv[], const Integer iopts[],
                          const double opts[], NagError *fail)
```

3 Description

nag_2d_spline_ts_eval(e02jec) calculates values at prescribed points \((x_i, y_i)\), for \(i = 1, 2, \ldots, n\), of a bivariate spline computed by nag_2d_spline_fit_ts_scat(e02jdc). It is derived from the TSFIT package of O. Davydov and F. Zeilfelder.

4 References

5 Arguments

1. \texttt{nevalv} – Integer

 \textit{Input}

 \textit{On entry}: \(n\), the number of values at which the spline is to be evaluated.

 \textit{Constraint}: \(\texttt{nevalv} \geq 1\).

2. \texttt{xevalv[nevalv]} – const double

 \textit{Input}

 \textit{On entry}: the \((x_i)\) values at which the spline is to be evaluated.

 \textit{Constraint}: for all \(i\), \texttt{xevalv[i-1]} must lie inside, or on the boundary of, the spline’s bounding box as determined by nag_2d_spline_fit_ts_scat(e02jdc).

3. \texttt{yevalv[nevalv]} – const double

 \textit{Input}

 \textit{On entry}: the \((y_i)\) values at which the spline is to be evaluated.

 \textit{Constraint}: for all \(i\), \texttt{yevalv[i-1]} must lie inside, or on the boundary of, the spline’s bounding box as determined by nag_2d_spline_fit_ts_scat(e02jdc).
4: `coefs[dim]` – const double
 Communication Array
 Note: the dimension, `dim`, of this array is dictated by the requirements of associated functions that must have been previously called. This array MUST be the same array passed as argument `coefs` in the previous call to nag_2d_spline_fit_ts_scat (e02jdc).

 On entry: the computed spline coefficients as output from nag_2d_spline_fit_ts_scat (e02jdc).

5: `fevalv[nevalv]` – double
 Output
 On exit: if `fail.code = NE_NOERROR` on exit `fevalv[i − 1]` contains the computed spline value at (x_i, y_i).

6: `iopts[dim]` – const Integer
 Communication Array
 Note: the dimension, `dim`, of this array is dictated by the requirements of associated functions that must have been previously called. This array MUST be the same array passed as argument `iopts` in the previous call to nag_fit_opt_set (e02zkc).

 On entry: the contents of the array MUST NOT have been modified either directly or indirectly, by a call to nag_fit_opt_set (e02zkc), between calls to nag_2d_spline_fit_ts_scat (e02jdc) and nag_2d_spline_ts_eval (e02jec).

7: `opts[dim]` – const double
 Communication Array
 Note: the dimension, `dim`, of this array is dictated by the requirements of associated functions that must have been previously called. This array MUST be the same array passed as argument `opts` in the previous call to nag_fit_opt_set (e02zkc).

 On entry: the contents of the array MUST NOT have been modified either directly or indirectly, by a call to nag_fit_opt_set (e02zkc), between calls to nag_2d_spline_fit_ts_scat (e02jdc) and nag_2d_spline_ts_eval (e02jec).

8: `fail` – NagError *
 Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_ALLOC_FAIL
 Dynamic memory allocation failed.
 See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
 On entry, argument `<value>` had an illegal value.

NE_INITIALIZATION
 Option arrays are not initialized or are corrupted.

NE_INT
 On entry, `nevalv = <value>`.
 Constraint: `nevalv ≥ 1`.

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
 An unexpected error has been triggered by this function. Please contact NAG.
 See Section 3.6.6 in the Essential Introduction for further information.
The fitting routine has not been called, or the array of coefficients has been corrupted.

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

On entry, $x_{\text{eval}}[\langle value\rangle] = \langle value\rangle$ was outside the bounding box.
Constraint: $\langle value\rangle \leq x_{\text{eval}}[i - 1] \leq \langle value\rangle$ for all i.

On entry, $y_{\text{eval}}[\langle value\rangle] = \langle value\rangle$ was outside the bounding box.
Constraint: $\langle value\rangle \leq y_{\text{eval}}[i - 1] \leq \langle value\rangle$ for all i.

nag_2d_spline_ts_eval uses the de Casteljau algorithm and thus is numerically stable. See Farin and Hansford (2000) for details.

Not applicable.

To evaluate a C^1 approximation (i.e., when Global Smoothing Level = 1), a real array of length $O(1)$ is dynamically allocated by each invocation of nag_2d_spline_ts_eval. No memory is allocated internally when evaluating a C^2 approximation.

See Section 10 in nag_2d_spline_fit_ts_scat.