1 Purpose

nag_linf_fit (e02gcc) calculates an l_∞ solution to an over-determined system of linear equations.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_linf_fit (Nag_OrderType order, Integer m, Integer n, double a[],
 double b[], double tol, double *relerr, double x[], double *resmax,
 Integer *rank, Integer *iter, NagError *fail)

3 Description

Given a matrix A with m rows and n columns ($m \geq n$) and a vector b with m elements, the function calculates an l_∞ solution to the over-determined system of equations

$$Ax = b.$$

That is to say, it calculates a vector x, with n elements, which minimizes the l_∞ norm of the residuals (the absolutely largest residual)

$$r(x) = \max_{1 \leq i \leq m} |r_i|$$

where the residuals r_i are given by

$$r_i = b_i - \sum_{j=1}^{n} a_{ij}x_j, \quad i = 1, 2, \ldots, m.$$

Here a_{ij} is the element in row i and column j of A, b_i is the ith element of b and x_j the jth element of x. The matrix A need not be of full rank. The solution is not unique in this case, and may not be unique even if A is of full rank.

Alternatively, in applications where a complete minimization of the l_∞ norm is not necessary, you may obtain an approximate solution, usually in shorter time, by giving an appropriate value to the argument relerr.

Typically in applications to data fitting, data consisting of m points with coordinates (t_i, y_i) is to be approximated in the l_∞ norm by a linear combination of known functions $\phi_j(t)$,

$$\alpha_1 \phi_1(t) + \alpha_2 \phi_2(t) + \cdots + \alpha_n \phi_n(t).$$

This is equivalent to finding an l_∞ solution to the over-determined system of equations

$$\sum_{j=1}^{n} \phi_j(t_i)\alpha_j = y_i, \quad i = 1, 2, \ldots, m.$$

Thus if, for each value of i and j the element a_{ij} of the matrix A above is set equal to the value of $\phi_j(t_i)$ and b_i is set equal to y_i, the solution vector x will contain the required values of the α_j. Note that the independent variable t above can, instead, be a vector of several independent variables (this includes the case where each ϕ_i is a function of a different variable, or set of variables).

The algorithm is a modification of the simplex method of linear programming applied to the dual formation of the l_∞ problem (see Barrodale and Phillips (1974) and Barrodale and Phillips (1975)). The modifications are designed to improve the efficiency and stability of the simplex method for this particular application.
4 References

Proc. 4th Manitoba Conf. Numerical Mathematics 177–190 University of Manitoba, Canada

Barrodale I and Phillips C (1975) Solution of an overdetermined system of linear equations in the

5 Arguments

1: order – Nag_OrderType
 Input

 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
 major ordering or column-major ordering. C language defined storage is specified by
 order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
 explanation of the use of this argument.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m – Integer
 Input

 On entry: the number of equations, m (the number of rows of the matrix A).

 Constraint: \(m \geq n \).

3: n – Integer
 Input

 On entry: the number of unknowns, n (the number of columns of the matrix A).

 Constraint: \(n \geq 1 \).

4: a[dim] – double
 Input/Output

 Note: the dimension, dim, of the array a must be at least \((n + 3) \times (m + 1)\).

 Where \(A(j,i) \) appears in this document, it refers to the array element
 \[a[(i-1) \times (n+3) + j-1] \] when order = Nag_ColMajor;
 \[a[(j-1) \times (m+1) + i-1] \] when order = Nag_RowMajor.

 On entry: \(A(j,i) \) must contain \(a_{ij} \), the element in the \(i \)th row and \(j \)th column of the matrix A, for
 \(i = 1,2,\ldots,m \) and \(j = 1,2,\ldots,n \), (that is, the transpose of the matrix). The remaining elements
 need not be set. Preferably, the columns of the matrix A (rows of the argument a) should be
 scaled before entry: see Section 7.

 On exit: contains the last simplex tableau.

5: b[m] – double
 Input/Output

 On entry: \(b[i-1] \) must contain \(b_i \), the \(i \)th element of the vector \(b \), for \(i = 1,2,\ldots,m \).

 On exit: the \(i \)th residual \(r_i \) corresponding to the solution vector \(x \), for \(i = 1,2,\ldots,m \). Note
 however that these residuals may contain few significant figures, especially when resmax is within
 one or two orders of magnitude of tol. Indeed if resmax \(\leq \) tol, the elements \(b[i-1] \) may all be
 set to zero. It is therefore often advisable to compute the residuals directly.

6: tol – double
 Input

 On entry: a threshold below which numbers are regarded as zero. The recommended threshold
 value is \(10.0 \times \epsilon \), where \(\epsilon \) is the machine precision. If tol \(\leq 0.0 \) on entry, the recommended value
 is used within the function. If premature termination occurs, a larger value for tol may result in a
 valid solution.

 Suggested value: 0.0.
relerr – double *

Input/Output

On entry: must be set to a bound on the relative error acceptable in the maximum residual at the solution.

If \(\text{relerr} \leq 0.0 \), then the \(l_\infty \) solution is computed, and \(\text{relerr} \) is set to 0.0 on exit.

If \(\text{relerr} > 0.0 \), then the function obtains instead an approximate solution for which the largest residual is less than \(1.0 + \text{relerr} \) times that of the \(l_\infty \) solution; on exit, \(\text{relerr} \) contains a smaller value such that the above bound still applies. (The usual result of this option, say with \(\text{relerr} = 0.1 \), is a saving in the number of simplex iterations).

On exit: is altered as described above.

x[n] – double

Output

On exit: if an optimal but not necessarily unique solution is found, \(x[j-1] \) contains the \(j \)th element of the solution vector \(x \), for \(j = 1, 2, \ldots, n \). Whether this is an \(l_\infty \) solution or an approximation to one, depends on the value of \(\text{relerr} \) on entry.

resmax – double *

Output

On exit: if an optimal but not necessarily unique solution is found, \(\text{resmax} \) contains the absolute value of the largest residual(s) for the solution vector \(x \). (See b.)

rank – Integer *

Output

On exit: if an optimal but not necessarily unique solution is found, \(\text{rank} \) contains the computed rank of the matrix \(A \).

iter – Integer *

Output

On exit: if an optimal but not necessarily unique solution is found, \(\text{iter} \) contains the number of iterations taken by the simplex method.

fail – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 1 \).

NE_INT_2

On entry, \(m = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(m \geq n \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE_NON_UNIQUE

An optimal solution has been obtained, but may not be unique.

NE_TERMINATION_FAILURE

Premature termination due to rounding errors. Try using larger value of tol: \(\text{tol} = \langle \text{value} \rangle \).

7 Accuracy

Experience suggests that the computational accuracy of the solution \(x \) is comparable with the accuracy that could be obtained by applying Gaussian elimination with partial pivoting to the \(n+1 \) equations which have residuals of largest absolute value. The accuracy therefore varies with the conditioning of the problem, but has been found generally very satisfactory in practice.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The effects of \(m \) and \(n \) on the time and on the number of iterations in the simplex method vary from problem to problem, but typically the number of iterations is a small multiple of \(n \) and the total time is approximately proportional to \(mn^2 \).

It is recommended that, before the function is entered, the columns of the matrix \(A \) are scaled so that the largest element in each column is of the order of unity. This should improve the conditioning of the matrix, and also enable the argument \(\text{tol} \) to perform its correct function. The solution \(x \) obtained will then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each \(j = 1, 2, \ldots, n \), the elements of the \(j \)th column are multiplied by the constant \(k_j \), the element \(x_j \) of the solution vector \(x \) must be multiplied by \(k_j \) if it is desired to recover the solution corresponding to the original matrix \(A \).

10 Example

This example approximates a set of data by a curve of the form

\[
y = Ke^t + Le^{-t} + M
\]

where \(K \), \(L \) and \(M \) are unknown. Given values \(y_i \) at 5 points \(t_i \) we may form the over-determined set of equations for \(K \), \(L \) and \(M \)

\[
e^{t_i}K + e^{-t_i}L + M = y_i, \quad i = 1, 2, \ldots, 5.
\]

\text{nag_linf_fit} (e02gcc) is used to solve these in the \(l_\infty \) sense.
10.1 Program Text

/* nag_linf_fit (e02gcc) Example Program. */
* Copyright 2014 Numerical Algorithms Group.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{
 /* Scalars */
 double relerr, resmax, t, tol;
 Integer exit_status, i, irank, iter, m, n, pda;
 NagError fail;
 Nag_OrderType order;

 /* Arrays */
 double *a = 0, *b = 0, *x = 0;

 NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda +I-1]
 #else
#define A(I, J) a[(I-1)*pda +J-1]
 #endif

 INIT_FAIL(fail);
 exit_status = 0;
 printf("nag_linf_fit (e02gcc) Example Program Results\n");

 /* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif

 n = 3;
 if (m > 0)
 {
 /* Allocate memory */
 if (!(*a = NAG_ALLOC((n+3)*(m+1), double)) ||
 !(*b = NAG_ALLOC(m, double)) ||
 !(*x = NAG_ALLOC(n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 // Allocate memory
 pda = n + 3;
 else
 pda = m + 1;
 for (i = 1; i <= m; ++i)
 {

 END:
 exit_status = 0;
}
```c
#ifdef _WIN32
    scanf_s("%lf%lf*\[\n] ", &t, &b[i-1]);
#else
    scanf("%lf%lf*\[\n] ", &t, &b[i-1]);
#endif
A(1, i) = exp(t);
A(2, i) = exp(-t);
A(3, i) = 1.0;
}
tol = 0.0;
relerr = 0.0;
/* nag_linf_fit (e02gcc).
   * L_infinity-approximation by general linear function
   */
nag_linf_fit(order, m, n, a, b, tol, &relerr, x, &resmax, &irank, &iter, &fail);
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_linf_fit (e02gcc).\n", fail.message);
    exit_status = 1;
    goto END;
}
else
{
    printf("\n");
    printf("resmax = %11.2e  Rank = %5"NAG_IFMT"  Iterations = "
          "%5"NAG_IFMT"\n", resmax, irank, iter);
    printf("\n");
    printf("Solution\n");
    for (i = 1; i <= n; ++i)
        printf("%10.4f", x[i-1]);
    printf("\n");
}
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(x);
return exit_status;
}

10.2 Program Data
nag_linf_fit (e02gcc) Example Program Data
5
0.0  4.501
0.2  4.360
0.4  4.333
0.6  4.418
0.8  4.625

10.3 Program Results
nag_linf_fit (e02gcc) Example Program Results
resmax = 1.03e-03  Rank =  3  Iterations =  4
Solution
  1.0049  2.0149  1.4822
```