NAG Library Function Document

nag_1d_everett_interp (e01abc)

1 Purpose
nag_1d_everett_interp (e01abc) interpolates a function of one variable at a given point \(x \) from a table of function values evaluated at equidistant points, using Everett’s formula.

2 Specification
#include <nag.h>
#include <nage01.h>

void nag_1d_everett_interp (Integer n, double p, double a[], double g[],
NagError *fail)

3 Description
nag_1d_everett_interp (e01abc) interpolates a function of one variable at a given point

\[x = x_0 + ph, \]

where \(-1 < p < 1\) and \(h \) is the interval of differencing, from a table of values \(x_m = x_0 + mh \) and \(y_m \) where \(m = -(n-1), -(n-2), \ldots, -1, 0, 1, \ldots, n \). The formula used is that of Fröberg (1970), neglecting the remainder term:

\[
y_p = \sum_{r=0}^{n-1} \left(1 - p + r \right) \frac{p^r}{2^r + 1} \delta^{2r} y_0 + \sum_{r=0}^{n-1} \left(p + r \right) \frac{p^r}{2^r + 1} \delta^{2r} y_1.
\]

The values of \(\delta^{2r} y_0 \) and \(\delta^{2r} y_1 \) are stored on exit from the function in addition to the interpolated function value \(y_p \).

4 References

5 Arguments
1: \(n \) – Integer
 \(Input \)
 \(On \ entry: \ n, \) half the number of points to be used in the interpolation.
 \(Constraint: n > 0. \)

2: \(p \) – double
 \(Input \)
 \(On \ entry: \) the point \(p \) at which the interpolated function value is required, i.e., \(p = (x - x_0)/h \) with \(-1.0 < p < 1.0\).
 \(Constraint: -1.0 < p < 1.0. \)

3: \(a[2 \times n] \) – double
 \(Input/Output \)
 \(On \ entry: \ a[i-1] \) must be set to the function value \(y_{i-n}, \) for \(i = 1, 2, \ldots, 2n. \)
 \(On \ exit: \) the contents of \(a \) are unspecified.
On exit: the array contains

\[y_0 \text{ in } g[0] \]
\[y_1 \text{ in } g[1] \]
\[\varepsilon^{2r} y_0 \text{ in } g[2r] \]
\[\varepsilon^{2r} y_1 \text{ in } g[2r + 1], \text{ for } r = 1, 2, \ldots, n - 1. \]

The interpolated function value \(y_p \) is stored in \(g[2n] \).

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n > 0 \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, \(p = \langle \text{value} \rangle \).

Constraint: \(p < 1.0 \).

On entry, \(p = \langle \text{value} \rangle \).

Constraint: \(p > -1.0 \).

7 Accuracy

In general, increasing \(n \) improves the accuracy of the result until full attainable accuracy is reached, after which it might deteriorate. If \(x \) lies in the central interval of the data (i.e., \(0.0 \leq p < 1.0 \)), as is desirable, an upper bound on the contribution of the highest order differences (which is usually an upper bound on the error of the result) is given approximately in terms of the elements of the array \(g \) by

\[a \times (|g[2n - 2]| + |g[2n - 1]|), \]

where \(a = 0.1, 0.02, 0.005, 0.001, 0.0002 \) for \(n = 1, 2, 3, 4, 5 \) respectively, thereafter decreasing roughly by a factor of 4 each time.
8 Parallelism and Performance

Not applicable.

9 Further Comments

The computation time increases as the order of n increases.

10 Example

This example interpolates at the point $x = 0.28$ from the function values

\[
\begin{pmatrix}
 x_i & -1.00 & -0.50 & 0.00 & 0.50 & 1.00 & 1.50 \\
 y_i & 0.00 & -0.53 & -1.00 & -0.46 & 2.00 & 11.09
\end{pmatrix}.
\]

We take $n = 3$ and $p = 0.56$.

10.1 Program Text

```c
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage01.h>

int main(void)
{
    /* Scalars */
    Integer exit_status = 0;
    Integer i, n, r;
    double p;
    NagError fail;
    /* Local Arrays */
    double *a = 0, *g = 0;

    INIT_FAIL(fail);

    printf("nag_1d_everett_interp (e01abc) Example Program Results\n");

    /* Skip heading in data file*/
    #ifdef _WIN32
        scanf_s("%*[\n] ");
    #else
        scanf("%*[\n] ");
    #endif
    #ifdef _WIN32
        scanf_s("%"NAG_IFMT ", &n);
    #else
        scanf("%"NAG_IFMT ", &n);
    #endif
    #ifdef _WIN32
        scanf_s("%"NAG_IFMT ", &p);
    #else
        scanf("%"NAG_IFMT ", &p);
    #endif
    #ifdef _WIN32
        scanf_s("%*[\n] ");
    #else
        scanf("%*[\n] ");
    #endif
```
/* Allocate memory */
if (!(a = NAG_ALLOC((2*n), double)) ||
 !(g = NAG_ALLOC((2*n+1), double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
for (i = 0; i < 2*n; i++)
#ifdef _WIN32
 scanf_s("%lf", &a[i]);
#else
 scanf("%lf", &a[i]);
#endif
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif
/* nag_1d_everett_interp (e01abc).
* Interpolated values, Everett’s formula, equally spaced data, one variable.
*/
nag_1d_everett_interp(n, p, a, g, &fail);
if (fail.code != NE_NOERROR){
 printf("Error from nag_1d_everett_interp (e01abc).
 %s
", fail.message);
 exit_status = 1;
 goto END;
}
printf("\n");
for (r = 0; r <= n - 1; r++){
 printf("Central differences order %"NAG_IFMT " of Y0 = %12.5f\n",
 r, g[2 * r]);
 printf(" Y1 = %12.5f\n",
 g[2 * r + 1]);
}
printf("\n");
printf("Function value at interpolation point = %12.5f\n", g[2*n]);

END:
NAG_FREE(a);
NAG_FREE(g);
return exit_status;
}

10.2 Program Data
nag_1d_everett_interp (e01abc) Example Program Data
3 0.56
 0.00 -0.53 -1.00 -0.46 2.00 11.09

10.3 Program Results
nag_1d_everett_interp (e01abc) Example Program Results
Central differences order 0 of Y0 = -1.00000
Y1 = -0.46000
Central differences order 1 of Y0 = 1.01000
Y1 = 1.92000
Central differences order 2 of Y0 = -0.04000
Y1 = 3.80000
Function value at interpolation point = -0.83591