NAG Library Function Document
nag_inteq_abel_weak_weights (d05byc)

1 Purpose

nag_inteq_abel_weak_weights (d05byc) computes the fractional quadrature weights associated with the
Backward Differentiation Formulae (BDF) of orders 4, 5 and 6. These weights can then be used in the
solution of weakly singular equations of Abel type.

2 Specification

#include <nag.h>
#include <nagd05.h>
void nag_inteq_abel_weak_weights (Integer iorder, Integer iq,
 double omega[], double sw[], NagError *fail)

3 Description

nag_inteq_abel_weak_weights (d05byc) computes the weights $W_{i,j}$ and ω_i for a family of quadrature
rules related to a BDF method for approximating the integral:

$$
\frac{1}{\sqrt{\pi}} \int_{t_j}^t \frac{\phi(s)}{\sqrt{t-s}} ds \approx \sqrt{h} \sum_{j=0}^{2p-2} W_{i,j}\phi(j \times h) + \sqrt{h} \sum_{j=2p-1}^{i} \omega_{i-j}\phi(j \times h), \quad 0 \leq t \leq T,
$$

(1)

with $t = i \times h(i \geq 0)$, for some given h. In (1), p is the order of the BDF method used and $W_{i,j}$, ω_i are
the fractional starting and the fractional convolution weights respectively. The algorithm for the
generation of ω_i is based on Newton’s iteration. Fast Fourier transform (FFT) techniques are used for
computing these weights and subsequently $W_{i,j}$ (see Baker and Derakhshan (1987) and Henrici (1979)
for practical details and Lubich (1986) for theoretical details). Some special functions can be represented
as the fractional integrals of simpler functions and fractional quadratures can be employed for their
computation (see Lubich (1986)). A description of how these weights can be used in the solution of
weakly singular equations of Abel type is given in Section 9.

4 References

Baker C T H and Derakhshan M S (1987) Computational approximations to some power series
Approximation Theory (eds L Collatz, G Meinardus and G Nürnberg) 81 11–20
Henrici P (1979) Fast Fourier methods in computational complex analysis SIAM Rev. 21 481–529

5 Arguments

1: iorder – Integer

On entry: p, the order of the BDF method to be used.

Constraint: $4 \leq \text{iorder} \leq 6$.

2: iq – Integer

On entry: determines the number of weights to be computed. By setting iq to a value, $2^{\text{iq}+1}$
 fractional convolution weights are computed.

Constraint: $\text{iq} \geq 0$.

3: \texttt{omega[2^{iq+2}]} \quad \text{double} \\
\textit{Output}

\textit{On exit:} the first 2^{iq+2} elements of \texttt{omega} contains the fractional convolution weights ω_i, for $i = 0, 1, \ldots, 2^{iq+1} - 1$. The remainder of the array is used as workspace.

4: \texttt{sw[N \times (2 \times \textit{iorder} - 1)]} \quad \text{double} \\
\textit{Output}

\textit{Note:} the (i, j)th element of the matrix is stored in \texttt{sw[(j - 1) \times N + i - 1]}.

\textit{On exit:} \texttt{sw[j \times N + i - 1]} contains the fractional starting weights $W_{i,j}$, for $i = 1, 2, \ldots, N$ and $j = 0, 1, \ldots, 2 \times \textit{iorder} - 2$, where $N = (2^{iq+1} + 2 \times \textit{iorder} - 1)$.

5: \texttt{fail} \quad \text{NagError*} \\
\textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \hspace{1em} \textbf{Error Indicators and Warnings}

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \langle \textit{value} \rangle had an illegal value.

\textbf{NE_INT}

On entry, $\textit{iorder} = \langle \textit{value} \rangle$.
Constraint: $4 \leq \textit{iorder} \leq 6$.

On entry, $\textit{iq} = \langle \textit{value} \rangle$.
Constraint: $\textit{iq} \geq 0$.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

\textbf{NE_NO_LICENCE}

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 \hspace{1em} \textbf{Accuracy}

Not applicable.

8 \hspace{1em} \textbf{Parallelism and Performance}

Not applicable.

9 \hspace{1em} \textbf{Further Comments}

Fractional quadrature weights can be used for solving weakly singular integral equations of Abel type. In this section, we propose the following algorithm which you may find useful in solving a linear weakly singular integral equation of the form
\(y(t) = f(t) + \frac{1}{\sqrt{\pi}} \int_0^t \frac{K(t,s)y(s)}{\sqrt{t-s}} ds, \quad 0 \leq t \leq T, \)

(2)

using nag_inteq_abel_weak_weights (d05byc). In (2), \(K(t,s) \) and \(f(t) \) are given and the solution \(y(t) \) is sought on a uniform mesh of size \(h \) such that \(T = N \times h \). Discretization of (2) yields

\[
y_i = f(i \times h) + \sqrt{h} \sum_{j=0}^{2\times iorder-2} W_{i,j} K(i \times h, j \times h) y_j + \sqrt{h} \sum_{j=2p-1}^{i} \omega_{i-j} K(i \times h, j \times h) y_j,
\]

(3)

where \(y_i \approx y(i \times h) \), for \(i = 1, 2, \ldots, N \). We propose the following algorithm for computing \(y_i \) from (3) after a call to nag_inteq_abel_weak_weights (d05byc):

(a) Set \(N = 2^{iq+1} + 2 \times iorder - 2 \) and \(h = T/N \).

(b) Equation (3) requires \(2 \times iorder - 2 \) starting values, \(y_j \), for \(j = 1, 2, \ldots, 2 \times iorder - 2 \), with \(y_0 = f(0) \). These starting values can be computed by solving the system

\[
y_i = f(i \times h) + \sqrt{h} \sum_{j=0}^{2\times iorder-2} \omega[j \times N + i] K(i \times h, j \times h) y_j, \quad i = 1, 2, \ldots, 2 \times iorder - 2.
\]

(c) Compute the inhomogeneous terms

\[
\sigma_i = f(i \times h) + \sqrt{h} \sum_{j=0}^{2\times iorder-2} \omega[j \times N + i] K(i \times h, j \times h) y_j, \quad i = 2 \times iorder - 1, 2 \times iorder, \ldots, N.
\]

(d) Start the iteration for \(i = 2 \times iorder - 1, 2 \times iorder, \ldots, N \) to compute \(y_i \) from:

\[
\left(1 - \sqrt{h} \omega[0] K(i \times h, i \times h)\right) y_i = \sigma_i + \sqrt{h} \sum_{j=2 \times iorder-1}^{i-1} \omega[i-j] K(i \times h, j \times h) y_j.
\]

Note that for nonlinear weakly singular equations, the solution of a nonlinear algebraic system is required at step (b) and a single nonlinear equation at step (d).

10 Example

The following example generates the first 16 fractional convolution and 23 fractional starting weights generated by the fourth-order BDF method.

10.1 Program Text

/* nag_inteq_abel_weak_weights (d05byc) Example Program. */
* * Copyright 2014 Numerical Algorithms Group.
* * Mark 23, 2011.
* /
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd05.h>
int main(void)
{
 /* Scalars */
 Integer exit_status = 0;
 Integer i, iorder, iq, j, iomega, n, ncols, ncwt, nmax;
 /* Arrays */
 double *omega = 0, *sw = 0;
 /* NAG types */
 NagError fail;

 INIT_FAIL(fail);

 printf("nag_inteq_abel_weak_weights (d05byc) Example Program Results\n");
/* Skip heading in data file*/
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif
#ifdef _WIN32
 scanf_s("%"NAG_IFMT"%*[\n] ", &iorder);
#else
 scanf("%"NAG_IFMT"%*[\n] ", &iorder);
#endif
#ifdef _WIN32
 scanf_s("%"NAG_IFMT"%*[\n] ", &iq);
#else
 scanf("%"NAG_IFMT"%*[\n] ", &iq);
#endif
ncwt = pow(2, iq + 1);
lomega = 2*ncwt;
ncols = 2 * iorder - 1;
nmax = ncwt + ncols;
if (omega = NAG_ALLOC(lomega, double)) ||
 (sw = NAG_ALLOC(ncols * nmax, double))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/*
 nag_inteq_abel_weak_weights (d05byc).
 Generate weights for use in solving weakly singular Abel-type equations.
*/
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_inteq_abel_weak_weights (d05byc).\n失误错误信息", fail.message);
 exit_status = 1;
 goto END;
}
printf("\nFractional convolution weights\n");
for (i = 0; i < ncwt; i++)
 printf("%9.4f\n", omega[i]);
printf("\nFractional starting weights W\n");
#define SW(I, J) sw[J * nmax + I - 1]
for (n = 1; n <= nmax; n++)
 {printf("%9.4f", sw[n]);
 for (j = 0; j < ncols; j++) printf("%9.4f", SW(n, j));
 }
#undef SW
END:
NAG_FREE(sw);
NAG_FREE(omega);
return exit_status;
}

10.2 Program Data
None.

10.3 Program Results

nag_inteq_abel_weak_weights (d05byc) Example Program Results

Fractional convolution weights

\[
\begin{array}{cccccccc}
0 & 0.6928 \\
1 & 0.6651 \\
2 & 0.4589 \\
3 & 0.3175 \\
4 & 0.2622 \\
5 & 0.2451 \\
6 & 0.2323 \\
7 & 0.2164 \\
8 & 0.2006 \\
9 & 0.1878 \\
10 & 0.1780 \\
11 & 0.1700 \\
12 & 0.1629 \\
13 & 0.1566 \\
14 & 0.1508 \\
15 & 0.1457 \\
\end{array}
\]

Fractional starting weights W

\[
\begin{array}{cccccccccccc}
1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
2 & 0.0565 & 2.8928 & -6.7497 & 11.6491 & -11.1355 & 5.3574 & -1.1223 \\
3 & 0.0371 & 1.7401 & -2.8628 & 5.5207 & -6.4058 & 3.2249 & -0.6583 \\
4 & 0.0300 & 1.3207 & -2.4642 & 6.3612 & -5.4478 & 2.7025 & -0.5481 \\
5 & 0.0258 & 1.1217 & -2.2620 & 5.3683 & -3.7553 & 2.2132 & -0.4549 \\
6 & 0.0230 & 0.9862 & -2.0034 & 4.5005 & -3.2772 & 2.7262 & -0.4320 \\
7 & 0.0208 & 0.9001 & -1.8989 & 4.2847 & -3.5861 & 2.8201 & -0.2253 \\
8 & 0.0190 & 0.8507 & -1.9250 & 4.4164 & -4.0181 & 2.7932 & -0.1564 \\
9 & 0.0173 & 0.8177 & -1.9697 & 4.5348 & -4.2425 & 2.7458 & -0.0967 \\
10 & 0.0160 & 0.7886 & -1.9781 & 4.5318 & -4.2769 & 2.6997 & -0.2127 \\
11 & 0.0149 & 0.7603 & -1.9548 & 4.4545 & -4.2332 & 2.6541 & -0.2620 \\
12 & 0.0140 & 0.7338 & -1.9198 & 4.3619 & -4.1782 & 2.6059 & -0.2716 \\
13 & 0.0132 & 0.7097 & -1.8842 & 4.2754 & -4.1246 & 2.5544 & -0.2767 \\
14 & 0.0125 & 0.6880 & -1.8497 & 4.1933 & -4.0662 & 2.5011 & -0.2845 \\
15 & 0.0119 & 0.6681 & -1.8153 & 4.1109 & -4.0004 & 2.4479 & -0.2915 \\
16 & 0.0114 & 0.6497 & -1.7805 & 4.0279 & -3.9304 & 2.3962 & -0.2951 \\
17 & 0.0110 & 0.6327 & -1.7461 & 3.9463 & -3.8598 & 2.3466 & -0.2958 \\
18 & 0.0105 & 0.6168 & -1.7126 & 3.8677 & -3.7907 & 2.2990 & -0.2950 \\
19 & 0.0102 & 0.6020 & -1.6804 & 3.7926 & -3.7238 & 2.2536 & -0.2935 \\
20 & 0.0098 & 0.5882 & -1.6495 & 3.7209 & -3.6589 & 2.2101 & -0.2917 \\
21 & 0.0095 & 0.5752 & -1.6199 & 3.6523 & -3.5961 & 2.1686 & -0.2895 \\
22 & 0.0093 & 0.5631 & -1.5916 & 3.5867 & -3.5356 & 2.1291 & -0.2871 \\
23 & 0.0090 & 0.5517 & -1.5644 & 3.5240 & -3.4774 & 2.0914 & -0.2844 \\
\end{array}
\]