1 Purpose

nag_inteq_abel2_weak (d05bdc) computes the solution of a weakly singular nonlinear convolution Volterra–Abel integral equation of the second kind using a fractional Backward Differentiation Formulae (BDF) method.

2 Specification

```c
#include <nag.h>
#include <nagd05.h>
void nag_inteq_abel2_weak (    
    double (*ck)(double t, Nag_Comm *comm),
    double (*cf)(double t, Nag_Comm *comm),
    double (*cg)(double s, double y, Nag_Comm *comm),
    Nag_WeightMode wtmode, Integer iorder, double tlim, double tolnl,
    Integer nmesh, double yn[], double rwsav[], Integer lrwsav,
    Nag_Comm *comm, NagError *fail)
```

3 Description

nag_inteq_abel2_weak (d05bdc) computes the numerical solution of the weakly singular convolution Volterra–Abel integral equation of the second kind

\[
y(t) = f(t) + \int_0^T k(t-s) g(s, y(s)) \, ds, \quad 0 \leq t \leq T.
\]

Note the constant \(1/\sqrt{\pi}\) in (1). It is assumed that the functions involved in (1) are sufficiently smooth.

The function uses a fractional BDF linear multi-step method to generate a family of quadrature rules (see nag_inteq_abel_weak_weights (d05byc)). The BDF methods available in nag_inteq_abel2_weak (d05bdc) are of orders 4, 5 and 6 (\(p\) say). For a description of the theoretical and practical background to these methods we refer to Lubich (1985) and to Baker and Derakhshan (1987) and Hairer et al. (1988) respectively.

The algorithm is based on computing the solution \(y(t)\) in a step-by-step fashion on a mesh of equispaced points. The size of the mesh is given by \(T/(N-1)\), \(N\) being the number of points at which the solution is sought. These methods require \(2p-1\) (including \(y(0)\)) starting values which are evaluated internally. The computation of the lag term arising from the discretization of (1) is performed by fast Fourier transform (FFT) techniques when \(N > 32 + 2p - 1\), and directly otherwise. The function does not provide an error estimate and you are advised to check the behaviour of the solution with a different value of \(N\). An option is provided which avoids the re-evaluation of the fractional weights when nag_inteq_abel2_weak (d05bdc) is to be called several times (with the same value of \(N\)) within the same program unit with different functions.
4 References

5 Arguments

1:
\textit{ck} – function, supplied by the user

\textit{ck} must evaluate the kernel \(k(t) \) of the integral equation (1).

The specification of \textit{ck} is:

\begin{verbatim}
double ck (double t, Nag_Comm *comm)
1: \quad t -- double \quad \textit{Input}
On entry: \(t \), the value of the independent variable.

2: \quad comm -- Nag_Comm *
 Pointer to structure of type Nag_Comm; the following members are relevant to \textit{ck}.
 \begin{itemize}
 \item user -- double *
 \item iuser -- Integer *
 \item p -- Pointer
 \end{itemize}
 The type Pointer will be \texttt{void *}. Before calling \texttt{nag_inteq_abel2_weak (d05bdc)} you may allocate memory and initialize these pointers with various quantities for use by \textit{ck} when called from \texttt{nag_inteq_abel2_weak (d05bdc)} (see Section 3.2.1.1 in the Essential Introduction).
\end{verbatim}

2:
\textit{cf} – function, supplied by the user

\textit{cf} must evaluate the function \(f(t) \) in (1).

The specification of \textit{cf} is:

\begin{verbatim}
double cf (double t, Nag_Comm *comm)
1: \quad t -- double \quad \textit{Input}
On entry: \(t \), the value of the independent variable.

2: \quad comm -- Nag_Comm *
 Pointer to structure of type Nag_Comm; the following members are relevant to \textit{cf}.
 \begin{itemize}
 \item user -- double *
 \item iuser -- Integer *
 \item p -- Pointer
 \end{itemize}
 The type Pointer will be \texttt{void *}. Before calling \texttt{nag_inteq_abel2_weak (d05bdc)} you may allocate memory and initialize these pointers with various quantities for use by \textit{cf} when called from \texttt{nag_inteq_abel2_weak (d05bdc)} (see Section 3.2.1.1 in the Essential Introduction).
\end{verbatim}
3: \textit{cg} – function, supplied by the user \hfill \textit{External Function}
\textit{cg} must evaluate the function $g(s, y(s))$ in (1).

The specification of \textit{cg} is:

```
double cg (double s, double y, Nag_Comm *comm)
```

1: \textit{s} – double \hfill \textit{Input}
\textit{On entry}: \textit{s}, the value of the independent variable.

2: \textit{y} – double \hfill \textit{Input}
\textit{On entry}: the value of the solution \textit{y} at the point \textit{s}.

3: \textit{comm} – Nag_Comm *
\textit{Pointer to structure of type Nag_Comm; the following members are relevant to \textit{cg}.}

\begin{itemize}
 \item \textit{user} – double *
 \item \textit{iuser} – Integer *
 \item \textit{p} = Pointer
\end{itemize}

The type Pointer will be \texttt{void *}. Before calling \texttt{nag_inteq_abel2_weak (d05bdc)} you may allocate memory and initialize these pointers with various quantities for use by \textit{cg} when called from \texttt{nag_inteq_abel2_weak (d05bdc)} (see Section 3.2.1.1 in the Essential Introduction).

4: \textit{wtmode} – Nag_WeightMode \hfill \textit{Input}
\textit{On entry}: if the fractional weights required by the method need to be calculated by the function then set \textit{wtmode} = Nag_InitWeights.

If \textit{wtmode} = Nag_ReuseWeights, the function assumes the fractional weights have been computed on a previous call and are stored in \texttt{rwsav}.

\textit{Constraint}: \textit{wtmode} = Nag_InitWeights or Nag_ReuseWeights.

\textit{Note}: when \texttt{nag_inteq_abel2_weak (d05bdc)} is re-entered with the value of \textit{wtmode} = Nag_ReuseWeights, the values of \textit{nmesh}, \textit{iorder} and the contents of \texttt{rwsav} MUST NOT be changed.

5: \textit{iorder} – Integer \hfill \textit{Input}
\textit{On entry}: \textit{p}, the order of the BDF method to be used.

\textit{Suggested value}: \textit{iorder} = 4.

\textit{Constraint}: $4 \leq \textit{iorder} \leq 6$.

6: \textit{tlim} – double \hfill \textit{Input}
\textit{On entry}: the final point of the integration interval, \textit{T}.

\textit{Constraint}: \textit{tlim} $> 10 \times$ \textit{machine precision}.

7: \textit{tolnl} – double \hfill \textit{Input}
\textit{On entry}: the accuracy required for the computation of the starting value and the solution of the nonlinear equation at each step of the computation (see Section 9).

\textit{Suggested value}: \textit{tolnl} = $\sqrt{\epsilon}$ where \textit{\epsilon} is the \textit{machine precision}.

\textit{Constraint}: \textit{tolnl} $> 10 \times$ \textit{machine precision}.
8: **nmesh** – Integer
Input
On entry: N, the number of equispaced points at which the solution is sought.
Constraint: $nmesh = 2^m + 2 \times iorder - 1$, where $m \geq 1$.

9: **yn[nmesh]** – double
Output
On exit: $yn[i - 1]$ contains the approximate value of the true solution $y(t)$ at the point $t = (i - 1) \times h$, for $i = 1, 2, \ldots, nmesh$, where $h = \text{tlim}/(nmesh - 1)$.

10: **rwsav[lrwsav]** – double
Communication Array
On entry: if *wtmode* = Nag_ReuseWeights, *rwsav* must contain fractional weights computed by a previous call of nag_inteq_abel2_weak (d05bdc) (see description of *wtmode*).
On exit: contains fractional weights which may be used by a subsequent call of nag_inteq_abel2_weak (d05bdc).

11: **lrwsav** – Integer
Input
On entry: the dimension of the array *rwsav*.
Constraint: $lrwsav \geq (2 \times iorder + 6) \times nmesh + 8 \times iorder^2 - 16 \times iorder + 1$.

12: **comm** – Nag_Comm *
The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

13: **fail** – NagError *
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument *(value)* had an illegal value.

NE_FAILED_START
An error occurred when trying to compute the starting values.

NE_FAILED_STEP
An error occurred when trying to compute the solution at a specific step.

NE_INT
On entry, $iorder = (value)$.
Constraint: $4 \leq iorder \leq 6$.

NE_INT_2
On entry, $lrwsav = (value)$.
Constraint: $lrwsav \geq (2 \times iorder + 6) \times nmesh + 8 \times iorder^2 - 16 \times iorder + 1$; that is, *(value)*.
On entry, $nmesh = (value)$ and $iorder = (value)$.
Constraint: $nmesh = 2^m + 2 \times iorder - 1$, for some m.

d05bdc
NAG Library Manual
Mark 25
On entry, \(\text{nmesh} = \langle \text{value} \rangle \) and \(\text{iorder} = \langle \text{value} \rangle \).
Constraint: \(\text{nmesh} \geq 2 \times \text{iorder} + 1 \).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL
On entry, \(\text{tlim} = \langle \text{value} \rangle \).
Constraints: \(\text{tlim} > 10 \times \text{machine precision} \).
On entry, \(\text{tolnl} = \langle \text{value} \rangle \).
Constraint: \(\text{tolnl} > 10 \times \text{machine precision} \).

7 Accuracy
The accuracy depends on \(\text{nmesh} \) and \(\text{tolnl} \), the theoretical behaviour of the solution of the integral equation and the interval of integration. The value of \(\text{tolnl} \) controls the accuracy required for computing the starting values and the solution of (2) at each step of computation. This value can affect the accuracy of the solution. However, for most problems, the value of \(\sqrt{\varepsilon} \), where \(\varepsilon \) is the machine precision, should be sufficient.

8 Parallelism and Performance
nag_inteq_abel2_weak (d05bdc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_inteq_abel2_weak (d05bdc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments
In solving (1), initially, nag_inteq_abel2_weak (d05bdc) computes the solution of a system of nonlinear equations for obtaining the \(2p - 1 \) starting values. nag_zero_nonlin_eqns_rcomm (c05qdc) is used for this purpose. When a failure with \(\text{fail.code} = \text{NE FAILED START} \) occurs (which corresponds to an error exit from nag_zero_nonlin_eqns_rcomm (c05qdc)), you are advised to either relax the value of \(\text{tolnl} \) or choose a smaller step size by increasing the value of \(\text{nmesh} \). Once the starting values are computed successfully, the solution of a nonlinear equation of the form
\[
Y_n - \alpha g(t_n, Y_n) - \Psi_n = 0,
\]
(2)
is required at each step of computation, where \(\Psi_n \) and \(\alpha \) are constants. nag_inteq_abel2_weak (d05bdc) calls nag_zero_cont_func_cntin_rcomm (c05axc) to find the root of this equation.

If a failure with \(\text{fail.code} = \text{NE FAILED STEP} \) occurs (which corresponds to an error exit from nag_zero_cont_func_cntin_rcomm (c05axc)), you are advised to relax the value of the \(\text{tolnl} \) or choose a smaller step size by increasing the value of \(\text{nmesh} \).
If a failure with fail code = NE_FAILED_START or NE_FAILED_STEP persists even after adjustments to tolnl and/or nmesh then you should consider whether there is a more fundamental difficulty. For example, the problem is ill-posed or the functions in (1) are not sufficiently smooth.

10 Example

In this example we solve the following integral equations

\[y(t) = \sqrt{t} + \frac{3}{8} t^2 - \int_0^t \frac{1}{\sqrt{t-s}} [y(s)]^3 \, ds, \quad 0 \leq t \leq 7, \]

with the solution \(y(t) = \sqrt{t} \), and

\[y(t) = (3-t)\sqrt{t} - \int_0^t \frac{1}{\sqrt{t-s}} \exp((1-s)^2 - [y(s)]^2) \, ds, \quad 0 \leq t \leq 5, \]

with the solution \(y(t) = (1-t)\sqrt{t} \). In the above examples, the fourth-order BDF is used, and nmesh is set to \(2^{6} + 7 \).

10.1 Program Text

/* nag_inteq_abel2_weak (d05bdc) Example Program. */
* Copyright 2014 Numerical Algorithms Group.
* Mark 23, 2011.
*/
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd05.h>
#include <nagx01.h>
#include <nagx02.h>

#ifdef __cplusplus
extern "C" {
#endif

static double NAG_CALL ck1(double t, Nag_Comm *comm);
static double NAG_CALL cf1(double t, Nag_Comm *comm);
static double NAG_CALL cg1(double s, double y, Nag_Comm *comm);
static double NAG_CALL ck2(double t, Nag_Comm *comm);
static double NAG_CALL cf2(double t, Nag_Comm *comm);
static double NAG_CALL cg2(double s, double y, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{
 /* Scalars */
 double h, t, tlim, tolnl;
 Integer exit_status = 0;
 Integer iorder = 4;
 Integer exno, i, iskip, nmesh, lrwsav;
 /* Arrays */
 static double ruser[6] = {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0};
 double *rwsav = 0, *yn = 0;
 /* NAG types */
 Nag_Comm comm;
 NagError fail;
 Nag_WeightMode wtmode;

 INIT_FAIL(fail);

 printf("nag_inteq_abel2_weak (d05bdc) Example Program Results\n");
 /* For communication with user-supplied functions: */
comm.user = ruser;

nmesh = pow(2, 6) + 7;
lrwsav = (2 * iorder + 6) * nmesh + 8 * pow(iorder, 2) - 16 * iorder + 1;

if (!(yn = NAG_ALLOC(nmesh, double)) ||
 !(rwsav = NAG_ALLOC(lrwsav, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

tolnl = sqrt(nag_machine_precision);

for (exno = 1; exno <= 2; exno++)
{
 printf("\nExample %"NAG_IFMT"\n\n", exno);

 if (exno==1)
 {
 tlim = 7.0;
 iskip = 5;
 h = tlim/(double) (nmesh - 1);
 wtmode = Nag_InitWeights;

 /*
 * nag_inreq_abel12_weak (d05bdc).
 * Nonlinear convolution Volterra-Abel equation, second kind,
 * weakly singular.
 */
 nag_inreq_abel12_weak(ck1, cf1, cg1, wtmode, iorder, tlim, tolnl,
 nmesh, yn, rwsav, lrwsav, &comm, &fail);
 }
 else
 {
 tlim = 5.0;
 iskip = 7;
 h = tlim/(double) (nmesh - 1);
 wtmode = Nag_ReuseWeights;

 /* nag_inreq_abel12_weak (d05bdc) as above. */
 nag_inreq_abel12_weak(ck2, cf2, cg2, wtmode, iorder, tlim, tolnl,
 nmesh, yn, rwsav, lrwsav, &comm, &fail);
 }
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_inreq_abel12_weak (d05bdc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }

 printf("The stepsize h = %8.4f\n", h);
 printf(" t Approximate\n");
 printf(" Solution\n");
 for (i = 0; i < nmesh; i++)
 {
 t = (double) (i) * h;
 if (i%iskip == 0) printf("%8.4f%15.4f\n", t, yn[i]);
 }
}

END:
NAG_FREE(rwsav);
NAG_FREE(yn);

return exit_status;
10.2 Program Data

None.

10.3 Program Results

nag_inteq_abel2_weak (d05bdc) Example Program Results

Example 1

(User-supplied callback ck1, first invocation.)
(User-supplied callback cf1, first invocation.)
(User-supplied callback cg1, first invocation.)
(User-supplied callback ck2, first invocation.)
(User-supplied callback cf2, first invocation.)
(User-supplied callback cg2, first invocation.)

exp(s * pow(1.0 - s, 2) - pow(y, 2));
The stepsize \(h = 0.1000 \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>Approximate Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.7071</td>
</tr>
<tr>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>1.5000</td>
<td>1.2247</td>
</tr>
<tr>
<td>2.0000</td>
<td>1.4142</td>
</tr>
<tr>
<td>2.5000</td>
<td>1.5811</td>
</tr>
<tr>
<td>3.0000</td>
<td>1.7321</td>
</tr>
<tr>
<td>3.5000</td>
<td>1.8708</td>
</tr>
<tr>
<td>4.0000</td>
<td>2.0000</td>
</tr>
<tr>
<td>4.5000</td>
<td>2.1213</td>
</tr>
<tr>
<td>5.0000</td>
<td>2.2361</td>
</tr>
<tr>
<td>5.5000</td>
<td>2.3452</td>
</tr>
<tr>
<td>6.0000</td>
<td>2.4495</td>
</tr>
<tr>
<td>6.5000</td>
<td>2.5495</td>
</tr>
<tr>
<td>7.0000</td>
<td>2.6458</td>
</tr>
</tbody>
</table>

Example 2

(User-supplied callback \(ck2 \), first invocation.)
(User-supplied callback \(cf2 \), first invocation.)
(User-supplied callback \(cg2 \), first invocation.)
The stepsize \(h = 0.0714 \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>Approximate Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.3536</td>
</tr>
<tr>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.5000</td>
<td>-0.6124</td>
</tr>
<tr>
<td>2.0000</td>
<td>-1.4142</td>
</tr>
<tr>
<td>2.5000</td>
<td>-2.3717</td>
</tr>
<tr>
<td>3.0000</td>
<td>-3.4641</td>
</tr>
<tr>
<td>3.5000</td>
<td>-4.6771</td>
</tr>
<tr>
<td>4.0000</td>
<td>-6.0000</td>
</tr>
<tr>
<td>4.5000</td>
<td>-7.4246</td>
</tr>
<tr>
<td>5.0000</td>
<td>-8.9443</td>
</tr>
</tbody>
</table>