1 Purpose

nag_numdiff_1d_real_absci (d04bbc) generates abscissae about a target abscissa x_0 for use in a subsequent call to nag_numdiff_1d_real_eval (d04bac).

2 Specification

```c
#include <nag.h>
#include <nagd04.h>
void nag_numdiff_1d_real_absci (double x_0, double hbase, double xval[])
```

3 Description

nag_numdiff_1d_real_absci (d04bbc) may be used to generate the necessary abscissae about a target abscissa x_0 for the calculation of derivatives using nag_numdiff_1d_real_eval (d04bac).

For a given x_0 and h, the abscissae correspond to the set \{${x_0, x_0 \pm (2j - 1)h}$, for $j = 1, 2, \ldots, 10$\}. These 21 points will be returned in ascending order in `xval`. In particular, `xval[10]` will be equal to x_0.

4 References

5 Arguments

1: `x_0` – double
 \textit{Input}

 \textit{On entry}: the abscissa x_0 at which derivatives are required.

2: `hbase` – double
 \textit{Input}

 \textit{On entry}: the chosen step size h. If $h < 10\epsilon$, where $\epsilon = \text{nag_machine_precision}$, then the default $h = \epsilon^{1/4}$ will be used.

3: `xval[21]` – double
 \textit{Output}

 \textit{On exit}: the abscissae for passing to nag_numdiff_1d_real_eval (d04bac).

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.
9 Further Comments

The results computed by nag_numdiff_1d_real_eval (d04bac) depend very critically on the choice of the user-supplied step length \(h \). The overall accuracy is diminished as \(h \) becomes small (because of the effect of round-off error) and as \(h \) becomes large (because the discretization error also becomes large). If the process of calculating derivatives is repeated four or five times with different values of \(h \) one can find a reasonably good value. A process in which the value of \(h \) is successively halved (or doubled) is usually quite effective. Experience has shown that in cases in which the Taylor series for the objective function about \(x_0 \) has a finite radius of convergence \(R \), the choices of \(h > R/19 \) are not likely to lead to good results. In this case some function values lie outside the circle of convergence.

10 Example

See Section 10 in nag_numdiff_1d_real_eval (d04bac).