NAG Library Function Document
nag_pde_parab_1d_fd_ode (d03phc)

1 Purpose
nag_pde_parab_1d_fd_ode (d03phc) integrates a system of linear or nonlinear parabolic partial differential equations (PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs). The spatial discretization is performed using finite differences, and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a backward differentiation formula method or a Theta method (switching between Newton’s method and functional iteration).

2 Specification

```c
#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_fd_ode (Integer npde, Integer m, double *ts,
                                 double tout,
                                 void (*pdedef)(Integer npde, double t, double x, const double u[],
                                   const double ux[], Integer ncode, const double v[],
                                   double q[], double r[],
                                   Integer *ires, Nag_Comm *comm),
                                 void (*bndary)(Integer npde, double t, const double u[],
                                   const double ux[], Integer ncode, const double v[],
                                   double vdot[], Integer ibnd, double beta[], double gamma[],
                                   Integer *ires, Nag_Comm *comm),
                                 double u[], Integer npts, const double x[], Integer ncode,
                                 void (*odedef)(Integer npde, double t, Integer ncode, const double v[],
                                   const double vdot[], Integer nxi, const double xi[],
                                   const double ucp[], const double ucpx[], const double rcp[],
                                   const double uctp[], const double uctpx[], double f[],
                                   Integer *ires, Nag_Comm *comm),
                                 Integer nxi, const double xi[], Integer neqn, const double rtol[],
                                 const double atol[], Integer itol, Nag_NormType norm,
                                 Nag_LinAlgOption laopt, const double algopt[],
                                 double rsave[], Integer lrsave, Integer isave[], Integer lisave,
                                 Integer itask, Integer itrace, const char *outfile, Integer *ind,
                                 Nag_Comm *comm, Nag_D03_Save *saved, NagError *fail)
```

3 Description

nag_pde_parab_1d_fd_ode (d03phc) integrates the system of parabolic-elliptic equations and coupled ODEs

\[
\sum_{j=1}^{npde} P_{ij} \frac{\partial U_j}{\partial t} + Q_i = x^{-m} \frac{\partial}{\partial x}(x^m R_i), \quad i = 1, 2, \ldots, npde, \quad a \leq x \leq b, \quad t \geq t_0, \quad (1)
\]

\[
F_i(t, V, \dot{V}, \xi, U^*, U_x^*, R^*, U_t^*, U_{xt}^*) = 0, \quad i = 1, 2, \ldots, ncode, \quad (2)
\]

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), \(P_{ij}\) and \(R_i\) depend on \(x, t, U, U_x\) and \(V\); \(Q_i\) depends on \(x, t, U, U_x\), \(V\) and \textit{linearly} on \(\dot{V}\). The vector \(U\) is the set of PDE solution values.
\[U(x, t) = [U_1(x, t), \ldots, U_{\text{npde}}(x, t)]^T, \]

and the vector \(U_x \) is the partial derivative with respect to \(x \). The vector \(V \) is the set of ODE solution values

\[V(t) = [V_1(t), \ldots, V_{\text{ncode}}(t)]^T, \]

and \(\dot{V} \) denotes its derivative with respect to time.

In (2), \(\xi \) represents a vector of \(n_\xi \) spatial coupling points at which the ODEs are coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. \(U^*, U_x^*, R^*, U_{xt}^* \) and \(U_x^* \) are the functions \(U, U_x, R, U_t \) and \(U_{xt} \) evaluated at these coupling points. Each \(F_i \) may only depend linearly on time derivatives. Hence the equation (2) may be written more precisely as

\[F = G - A\dot{V} - B \begin{pmatrix} U_t^* \\ U_{xt}^* \end{pmatrix}, \]

where \(F = [F_1, \ldots, F_{\text{npde}}]^T \), \(G \) is a vector of length \(\text{ncode} \), \(A \) is an \(\text{ncode} \) by \(\text{ncode} \) matrix, \(B \) is an \(\text{ncode} \) by \((n_\xi \times \text{npde}) \) matrix and the entries in \(G, A \) and \(B \) may depend on \(t, \xi, U^*, U_x^* \) and \(V \). In practice you only need to supply a vector of information to define the ODEs and not the matrices \(A \) and \(B \). (See Section 5 for the specification of \text{odedef}.)

The integration in time is from \(t_0 \) to \(t_{\text{out}} \), over the space interval \(a \leq x \leq b \), where \(a = x_1 \) and \(b = x_{\text{npts}} \) are the leftmost and rightmost points of a user-defined mesh \(x_1, x_2, \ldots, x_{\text{npts}} \). The coordinate system in space is defined by the values of \(m \); \(m = 0 \) for Cartesian coordinates, \(m = 1 \) for cylindrical polar coordinates and \(m = 2 \) for spherical polar coordinates.

The PDE system which is defined by the functions \(P_{i,j}, Q_i \) and \(R_i \) must be specified in \text{pdedef}.

The initial values of the functions \(U(x, t) \) and \(V(t) \) must be given at \(t = t_0 \).

The functions \(R_i \) which may be thought of as fluxes, are also used in the definition of the boundary conditions. The boundary conditions must have the form

\[\beta_i(x, t) R_i(x, t, U, U_x, V) = \gamma_i(x, t, U, U_x, V, \dot{V}), \quad i = 1, 2, \ldots, \text{npde}, \]

where \(x = a \) or \(x = b \).

The boundary conditions must be specified in \text{bndary}. The function \(\gamma_i \) may depend \text{linearly} on \(\dot{V} \).

The problem is subject to the following restrictions:

(i) In (1), \(\dot{V}_j(t) \), for \(j = 1, 2, \ldots, \text{ncode} \), may only appear \text{linearly} in the functions \(Q_i \), for \(i = 1, 2, \ldots, \text{npde} \), with a similar restriction for \(\gamma \);

(ii) \(P_{i,j} \) and the flux \(R_i \) must not depend on any time derivatives;

(iii) \(t_0 < t_{\text{out}} \), so that integration is in the forward direction;

(iv) the evaluation of the terms \(P_{i,j}, Q_i \) and \(R_i \) is done approximately at the mid-points of the mesh \(x[i-1], \) for \(i = 1, 2, \ldots, \text{npts} \), by calling the \text{pdedef} for each mid-point in turn. Any discontinuities in these functions \text{must} therefore be at one or more of the mesh points \(x_1, x_2, \ldots, x_{\text{npts}} \);

(v) at least one of the functions \(P_{i,j} \) must be nonzero so that there is a time derivative present in the PDE problem;

(vi) if \(m > 0 \) and \(x_1 = 0.0 \), which is the left boundary point, then it must be ensured that the PDE solution is bounded at this point. This can be done by either specifying the solution at \(x = 0.0 \) or by specifying a zero flux there, that is \(\beta_i = 1.0 \) and \(\gamma_i = 0.0 \). See also Section 9 below.

The algebraic-differential equation system which is defined by the functions \(F_i \) must be specified in \text{odedef}. You must also specify the coupling points \(\xi \) in the array \text{xi}.

The parabolic equations are approximated by a system of ODEs in time for the values of \(U_i \) at mesh points. For simple problems in Cartesian coordinates, this system is obtained by replacing the space derivatives by the usual central, three-point finite difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified three-point formula which maintains second order accuracy. In total there are $npde \times npts + ncode$ ODEs in the time direction. This system is then integrated forwards in time using a backward differentiation formula (BDF) or a Theta method.

4 References

5 Arguments

1: npde – Integer
 Input

 On entry: the number of PDEs to be solved.

 Constraint: npde \geq 1.

2: m – Integer
 Input

 On entry: the coordinate system used:

 $m = 0$

 Indicates Cartesian coordinates.

 $m = 1$

 Indicates cylindrical polar coordinates.

 $m = 2$

 Indicates spherical polar coordinates.

 Constraint: m $=$ 0, 1 or 2.

3: ts – double *
 Input/Output

 On entry: the initial value of the independent variable t.

 On exit: the value of t corresponding to the solution values in u. Normally ts $=$ tout.

 Constraint: ts $<$ tout.

4: tout – double
 Input

 On entry: the final value of t to which the integration is to be carried out.

5: pdedef – function, supplied by the user
 External Function

 pdedef must evaluate the functions $P_{i,j}$, Q_i and R_i which define the system of PDEs. The functions may depend on x, t, U, U_x and V. Q_i may depend linearly on V. pdedef is called approximately midway between each pair of mesh points in turn by nag_pde_parab_1d_fd_ode (d03phc).
The specification of `pdedef` is:

```c
void pdedef (Integer npde, double t, double x, const double u[],
             const double ux[], Integer ncode, const double v[],
             const double vdot[], double p[], double q[], double r[],
             Integer *ires, Nag_Comm *comm)
```

1: `npde` – Integer
 `Input`
 On entry: the number of PDEs in the system.

2: `t` – double
 `Input`
 On entry: the current value of the independent variable `t`.

3: `x` – double
 `Input`
 On entry: the current value of the space variable `x`.

4: `u[npde]` – const double
 `Input`
 On entry: `u[i - 1]` contains the value of the component \(U_i(x, t) \), for \(i = 1, 2, \ldots, \text{npde} \).

5: `ux[npde]` – const double
 `Input`
 On entry: `ux[i - 1]` contains the value of the component \(\frac{\partial U_i(x, t)}{\partial x} \), for \(i = 1, 2, \ldots, \text{npde} \).

6: `ncode` – Integer
 `Input`
 On entry: the number of coupled ODEs in the system.

7: `v[ncode]` – const double
 `Input`
 On entry: if `ncode > 0`, `v[i - 1]` contains the value of the component \(V_i(t) \), for \(i = 1, 2, \ldots, \text{ncode} \).

8: `vdot[ncode]` – const double
 `Input`
 On entry: if `ncode > 0`, `vdot[i - 1]` contains the value of component \(\dot{V}_i(t) \), for \(i = 1, 2, \ldots, \text{ncode} \).

 Note: \(\dot{V}_i(t) \), for \(i = 1, 2, \ldots, \text{ncode} \), may only appear linearly in \(Q_j \), for \(j = 1, 2, \ldots, \text{npde} \).

9: `p[npde × npde]` – double
 `Output`
 On exit: `p[i - 1]` must be set to the value of \(P_{ij}(x, t, U, U_x, V) \), for \(i = 1, 2, \ldots, \text{npde} \) and \(j = 1, 2, \ldots, \text{npde} \).

10: `q[npde]` – double
 `Output`
 On exit: `q[i - 1]` must be set to the value of \(Q_i(x, t, U, U_x, V, \dot{V}) \), for \(i = 1, 2, \ldots, \text{npde} \).

11: `r[npde]` – double
 `Output`
 On exit: `r[i - 1]` must be set to the value of \(R_i(x, t, U, U_x, V) \), for \(i = 1, 2, \ldots, \text{npde} \).

12: `ires` – Integer *
 `Input/Output`
 On entry: set to -1 or 1.
On exit: should usually remain unchanged. However, you may set ires to force the integration function to take certain actions as described below:

ires = 2
Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to fail.code = NE_USER_STOP.

ires = 3
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires = 3 when a physically meaningless input or output value has been generated. If you consecutively set ires = 3, then nag_pde_parab_1d_fd_ode (d03phc) returns to the calling function with the error indicator set to fail.code = NE_FAILED_DERIV.

13:
comm – Nag_Comm *
Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

user – double *
user – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_fd_ode (d03phc) you may allocate memory and initialize these pointers with various quantities for use by pdedef when called from nag_pde_parab_1d_fd_ode (d03phc) (see Section 3.2.1.1 in the Essential Introduction).

6:
bndary – function, supplied by the user
External Function

bndary must evaluate the functions \(\beta_i \) and \(\gamma_i \) which describe the boundary conditions, as given in (4).

The specification of bndary is:

```c
void bndary (Integer npde, double t, const double u[],
            const double ux[], Integer ncode, const double v[],
            const double vdot[], Integer ibnd, double beta[], double gamma[],
            Integer *ires, Nag_Comm *comm)
```

1:
npde – Integer
Input

On entry: the number of PDEs in the system.

2:
t – double
Input

On entry: the current value of the independent variable \(t \).

3:
u[npde] – const double
Input

On entry: \(u[i-1] \) contains the value of the component \(U_i(x,t) \) at the boundary specified by ibnd, for \(i = 1, 2, \ldots, \text{npde} \).

4:
ux[npde] – const double
Input

On entry: \(ux[i-1] \) contains the value of the component \(\frac{\partial U_i(x,t)}{\partial x} \) at the boundary specified by ibnd, for \(i = 1, 2, \ldots, \text{npde} \).

5:
ncode – Integer
Input

On entry: the number of coupled ODEs in the system.
6: \(\text{v[ncode]} \) – const double

\text{Input}

\text{On entry:} \text{ if } \text{ncode} > 0, \text{ v[i - 1]} \text{ contains the value of the component } V_i(t), \text{ for } i = 1, 2, \ldots, \text{ncode}.

7: \(\text{vdot[ncode]} \) – const double

\text{Input}

\text{On entry:} \text{ if } \text{ncode} > 0, \text{ vdot[i - 1]} \text{ contains the value of component } \dot{V}_i(t), \text{ for } i = 1, 2, \ldots, \text{ncode}.

\text{Note: } \dot{V}_i(t), \text{ for } i = 1, 2, \ldots, \text{ncode}, \text{ may only appear linearly in } Q_j, \text{ for } j = 1, 2, \ldots, \text{npde}.

8: \(\text{ibnd} \) – Integer

\text{Input}

\text{On entry:} \text{ specifies which boundary conditions are to be evaluated.}

\text{ibnd} = 0

\text{bndary must set up the coefficients of the left-hand boundary, } x = a.

\text{ibnd} \neq 0

\text{bndary must set up the coefficients of the right-hand boundary, } x = b.

9: \(\text{beta[npde]} \) – double

\text{Output}

\text{On exit: } \text{beta[i - 1]} \text{ must be set to the value of } \beta_i(x, t) \text{ at the boundary specified by } \text{ibnd}, \text{ for } i = 1, 2, \ldots, \text{npde}.

10: \(\text{gamma[npde]} \) – double

\text{Output}

\text{On exit: } \text{gamma[i - 1]} \text{ must be set to the value of } \gamma_i(x, t, U, U_x, \dot{V}, \dot{V}) \text{ at the boundary specified by } \text{ibnd}, \text{ for } i = 1, 2, \ldots, \text{npde}.

11: \(\text{ires} \) – Integer *

\text{Input/Output}

\text{On entry:} \text{ set to } -1 \text{ or } 1.

\text{On exit:} \text{ should usually remain unchanged. However, you may set } \text{ires} \text{ to force the integration function to take certain actions as described below:}

\text{ires} = 2

\text{Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to } \text{fail.code} = \text{NE_USER_STEP}.

\text{ires} = 3

\text{Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set } \text{ires} = 3 \text{ when a physically meaningless input or output value has been generated. If you consecutively set } \text{ires} = 3, \text{ then nag_pde_parab_1d_fd_ode (d03phc) returns to the calling function with the error indicator set to } \text{fail.code} = \text{NE_FAULT_DERIV}.

12: \(\text{comm} \) – Nag_Comm *

\text{Pointer to structure of type Nag_Comm; the following members are relevant to } \text{bndary.}

\text{user} – double *

\text{user} – Integer *

p – Pointer

\text{The type Pointer will be void *. Before calling nag_pde_parab_1d_fd_ode (d03phc) you may allocate memory and initialize these pointers with various quantities for use by } \text{bndary} \text{ when called from nag_pde_parab_1d_fd_ode (d03phc) (see Section 3.2.1.1 in the Essential Introduction).}
7: \(u[\text{neqn}] \) – double

Input/Output

On entry: the initial values of the dependent variables defined as follows:

\[
\begin{align*}
 &u[npde \times (j - 1) + i - 1] \text{ contain } U_i(x_j, t_0), \text{ for } i = 1, 2, \ldots, npde \text{ and } j = 1, 2, \ldots, npts, \text{ and} \\
 &u[npts \times npde + i - 1] \text{ contain } V_i(t_0), \text{ for } i = 1, 2, \ldots, ncode.
\end{align*}
\]

On exit: the computed solution \(U_i(x_j, t), \text{ for } i = 1, 2, \ldots, npde \text{ and } j = 1, 2, \ldots, npts, \) and \(V_k(t), \text{ for } k = 1, 2, \ldots, ncode, \) evaluated at \(t = ts. \)

8: \(npts \) – Integer

Input

On entry: the number of mesh points in the interval \([a, b]\).

Constraint: \(npts \geq 3. \)

9: \(x[npts] \) – const double

Input

On entry: the mesh points in the space direction. \(x[0] \) must specify the left-hand boundary, \(a, \) and \(x[npts - 1] \) must specify the right-hand boundary, \(b. \)

Constraint: \(x[0] < x[1] < \cdots < x[npts - 1]. \)

10: \(ncode \) – Integer

Input

On entry: the number of coupled ODE components.

Constraint: \(ncode \geq 0. \)

11: \(\text{odedef} \) – function, supplied by the user

External Function

\(\text{odedef} \) must evaluate the functions \(F, \) which define the system of ODEs, as given in (3).

If \(ncode = 0, \) \(\text{odedef} \) will never be called and the NAG defined null void function pointer, NULLFN, can be supplied in the call to \(\text{nag_pde_parab_1d_fd_ode} \) (d03phc).

The specification of \(\text{odedef} \) is:

```c
void odedef (Integer npde, double t, Integer ncode, const double v[],
            const double vdot[], Integer nxi, const double xi[],
            const double ucp[], const double ucpx[], const double rcp[],
            const double ucpt[], const double ucptx[], double f[],
            Integer *ires, Nag_Comm *comm)
```

1: \(npde \) – Integer

Input

On entry: the number of PDEs in the system.

2: \(t \) – double

Input

On entry: the current value of the independent variable \(t. \)

3: \(ncode \) – Integer

Input

On entry: the number of coupled ODEs in the system.

4: \(v[ncode] \) – const double

Input

On entry: if \(ncode > 0, v[i - 1] \) contains the value of the component \(V_i(t), \) for \(i = 1, 2, \ldots, ncode. \)

5: \(vdot[ncode] \) – const double

Input

On entry: if \(ncode > 0, vdot[i - 1] \) contains the value of component \(\dot{V}_i(t), \) for \(i = 1, 2, \ldots, ncode. \)
6: \texttt{nxi} – Integer

\textit{Input}

\textit{On entry:} the number of ODE/PDE coupling points.

7: \texttt{xi[nxi]} – const double

\textit{Input}

\textit{On entry:} if \texttt{nxi} > 0, \texttt{xi[i – 1]} contains the ODE/PDE coupling points, \(\xi_i\), for \(i = 1, 2, \ldots, \text{nxi}\).

8: \texttt{ucp[npde x nxi]} – const double

\textit{Input}

\textit{On entry:} if \texttt{nxi} > 0, \texttt{ucp[npde x (j – 1) + i – 1]} contains the value of \(U_i(x,t)\) at the coupling point \(x = \xi_j\), for \(i = 1, 2, \ldots, \text{npde}\) and \(j = 1, 2, \ldots, \text{nxi}\).

9: \texttt{ucpx[npde x nxi]} – const double

\textit{Input}

\textit{On entry:} if \texttt{nxi} > 0, \texttt{ucpx[npde x (j – 1) + i – 1]} contains the value of \(\frac{\partial U_i(x,t)}{\partial x}\) at the coupling point \(x = \xi_j\), for \(i = 1, 2, \ldots, \text{npde}\) and \(j = 1, 2, \ldots, \text{nxi}\).

10: \texttt{rcp[npde x nxi]} – const double

\textit{Input}

\textit{On entry:} \texttt{rcp[npde x (j – 1) + i – 1]} contains the value of the flux \(R_i\) at the coupling point \(x = \xi_j\), for \(i = 1, 2, \ldots, \text{npde}\) and \(j = 1, 2, \ldots, \text{nxi}\).

11: \texttt{ucpt[npde x nxi]} – const double

\textit{Input}

\textit{On entry:} if \texttt{nxi} > 0, \texttt{ucpt[npde x (j – 1) + i – 1]} contains the value of \(\frac{\partial U_i}{\partial t}\) at the coupling point \(x = \xi_j\), for \(i = 1, 2, \ldots, \text{npde}\) and \(j = 1, 2, \ldots, \text{nxi}\).

12: \texttt{ucptx[npde x nxi]} – const double

\textit{Input}

\textit{On entry:} \texttt{ucptx[npde x (j – 1) + i – 1]} contains the value of \(\frac{\partial^2 U_i}{\partial x \partial t}\) at the coupling point \(x = \xi_j\), for \(i = 1, 2, \ldots, \text{npde}\) and \(j = 1, 2, \ldots, \text{nxi}\).

13: \texttt{f[ncode]} – double

\textit{Output}

\textit{On exit:} \texttt{f[i – 1]} must contain the \(i\)th component of \(F\), for \(i = 1, 2, \ldots, \text{ncode}\), where \(F\) is defined as

\[F = G - AV - B \left(\begin{array}{c} U^s_x \\ U^s_{xt} \end{array} \right), \quad (5) \]

or

\[F = -AV - B \left(\begin{array}{c} U^s_x \\ U^s_{xt} \end{array} \right). \quad (6) \]

The definition of \(F\) is determined by the input value of \texttt{ires}.

14: \texttt{ires} – Integer *

\textit{Input/Output}

\textit{On entry:} the form of \(F\) that must be returned in the array \texttt{f}.

\begin{itemize}
 \item \texttt{ires} = 1
 \begin{itemize}
 \item Equation (5) must be used.
 \end{itemize}
 \item \texttt{ires} = –1
 \begin{itemize}
 \item Equation (6) must be used.
 \end{itemize}
\end{itemize}
On exit: should usually remain unchanged. However, you may reset `ires` to force the integration function to take certain actions as described below:

- **`ires = 2`**
 Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to `fail.code = NE_USER_STOP`.

- **`ires = 3`**
 Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set `ires = 3` when a physically meaningless input or output value has been generated. If you consecutively set `ires = 3`, then `nag_pde_parab_1d_fd_ode (d03phc)` returns to the calling function with the error indicator set to `fail.code = NE_FAILED_DERIV`.

15: **comm** – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to `odedef`.

- **`user`** – double *
- **`iuser`** – Integer *
- **`p`** – Pointer

The type Pointer will be void *. Before calling `nag_pde_parab_1d_fd_ode (d03phc)` you may allocate memory and initialize these pointers with various quantities for use by `odedef` when called from `nag_pde_parab_1d_fd_ode (d03phc)` (see Section 3.2.1.1 in the Essential Introduction).

12: **nxi** – Integer

Input

On entry: the number of ODE/PDE coupling points.

Constraints:
- if `ncode = 0`, `nxi = 0`;
- if `ncode > 0`, `nxi ≥ 0`.

13: **xi[nxi]** – const double

Input

On entry: if `nxi > 0`, `xi[i - 1]`, for `i = 1, 2, ..., nxi`, must be set to the ODE/PDE coupling points.

14: **neqn** – Integer

Input

On entry: the number of ODEs in the time direction.

Constraint: `neqn = npde × npts + ncode`.

15: **rtol[dim]** – const double

Input

Note: the dimension, `dim`, of the array `rtol` must be at least

- 1 when `itol = 1` or 2;
- `neqn` when `itol = 3` or 4.

On entry: the relative local error tolerance.

Constraint: `rtol[0] ≥ 0.0` for all relevant `i`.

16: **atol[dim]** – const double

Input

Note: the dimension, `dim`, of the array `atol` must be at least

- 1 when `itol = 1` or 3;
- `neqn` when `itol = 2` or 4.
On entry: the absolute local error tolerance.

Constraint: \(\text{atol}[i-1] \geq 0.0 \) for all relevant \(i \).

Note: corresponding elements of \(\text{rtol} \) and \(\text{atol} \) cannot both be 0.0.

17: \(\text{itol} \) – Integer

Input

On entry: a value to indicate the form of the local error test. \(\text{itol} \) indicates to \nag_pde_parab_1d_fd_ode (d03phc) whether to interpret either or both of \(\text{rtol} \) or \(\text{atol} \) as a vector or scalar. The error test to be satisfied is \(\|e_i/w_i\| < 1.0 \), where \(w_i \) is defined as follows:

<table>
<thead>
<tr>
<th>itol</th>
<th>rtol</th>
<th>atol</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>scalar</td>
<td>scalar</td>
<td>(\text{rtol}[0] \times</td>
</tr>
<tr>
<td>2</td>
<td>scalar</td>
<td>vector</td>
<td>(\text{rtol}[0] \times</td>
</tr>
<tr>
<td>3</td>
<td>vector</td>
<td>scalar</td>
<td>(\text{rtol}[i-1] \times</td>
</tr>
<tr>
<td>4</td>
<td>vector</td>
<td>vector</td>
<td>(\text{rtol}[i-1] \times</td>
</tr>
</tbody>
</table>

In the above, \(e_i \) denotes the estimated local error for the \(i \)th component of the coupled PDE/ODE system in time, \(u[i-1] \), for \(i = 1, 2, \ldots, \text{neqn} \).

The choice of norm used is defined by the argument \(\text{norm} \).

Constraint: \(1 \leq \text{itol} \leq 4 \).

18: \(\text{norm} \) – Nag_NormType

Input

On entry: the type of norm to be used.

\(\text{norm} = \text{Nag_MaxNorm} \)
Maximum norm.

\(\text{norm} = \text{Nag_TwoNorm} \)
Averaged \(L_2 \) norm.

If \(\text{u}_\text{norm} \) denotes the norm of the vector \(\text{u} \) of length \(\text{neqn} \), then for the averaged \(L_2 \) norm

\[
\text{u}_\text{norm} = \sqrt{\frac{1}{\text{neqn}} \sum_{i=1}^{\text{neqn}} (u[i-1]/w_i)^2},
\]

while for the maximum norm

\[
\text{u}_\text{norm} = \max_i |u[i-1]/w_i|.
\]

See the description of \(\text{itol} \) for the formulation of the weight vector \(w \).

Constraint: \(\text{norm} = \text{Nag_MaxNorm} \) or \(\text{Nag_TwoNorm} \).

19: \(\text{laopt} \) – Nag_LinAlgOption

Input

On entry: the type of matrix algebra required.

\(\text{laopt} = \text{Nag_LinAlgFull} \)
Full matrix methods to be used.

\(\text{laopt} = \text{Nag_LinAlgBand} \)
Banded matrix methods to be used.

\(\text{laopt} = \text{Nag_LinAlgSparse} \)
Sparse matrix methods to be used.

Constraint: \(\text{laopt} = \text{Nag_LinAlgFull}, \text{Nag_LinAlgBand} \) or \(\text{Nag_LinAlgSparse} \).

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e., \(\text{ncode} = 0 \)).
The options provided by the `algopt` parameter allow for various choices in the integrator's behavior. Here are the explanations for each option:

- `algopt[0]`: Selects the ODE integration method to be used. If `algopt[0] = 1.0`, a BDF method is used and if `algopt[0] = 2.0`, a Theta method is used. The default value is `algopt[0] = 1.0`.

- `algopt[1]`: Specifies the maximum order of the BDF integration formula to be used. `algopt[1]` may be set to 1.0, 2.0, 3.0, 4.0 or 5.0. The default value is `algopt[1] = 5.0`.

- `algopt[2]`: Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the BDF method. If `algopt[2] = 1.0` a modified Newton iteration is used and if `algopt[2] = 2.0` a functional iteration method is used. If functional iteration is selected and the integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration. The default value is `algopt[2] = 1.0`.

- `algopt[3]`: Specifies whether or not the Petzold error test is to be employed. The Petzold error test results in extra overhead but is more suitable when algebraic equations are present, such as $P_{ij} = 0.0$, for $j = 1, 2, \ldots, npde$, for some i or when there is no $V_i(t)$ dependence in the coupled ODE system. If `algopt[3] = 1.0`, then the Petzold test is used. If `algopt[3] = 2.0`, then the Petzold test is not used. The default value is `algopt[3] = 1.0`.

- `algopt[4]`: Specifies the value of Theta to be used in the Theta integration method. $0.51 \leq algopt[4] \leq 0.99$. The default value is `algopt[4] = 0.55`.

- `algopt[5]`: Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the Theta method. If `algopt[5] = 1.0`, a modified Newton iteration is used and if `algopt[5] = 2.0`, a functional iteration method is used. The default value is `algopt[5] = 1.0`.

- `algopt[6]`: Specifies whether or not the integrator is allowed to switch automatically between modified Newton and functional iteration methods in order to be more efficient. If `algopt[6] = 1.0`, then switching is allowed and if `algopt[6] = 2.0`, then switching is not allowed. The default value is `algopt[6] = 1.0`.

- `algopt[10]`: Specifies a point in the time direction, t_{crit}, beyond which integration must not be attempted. The use of t_{crit} is described under the argument `itask`. If `algopt[0] \neq 0.0`, a value of 0.0 for `algopt[10]`, say, should be specified even if `itask` subsequently specifies that t_{crit} will not be used.

- `algopt[11]`: Specifies the minimum absolute step size to be allowed in the time integration. If this option is not required, `algopt[11]` should be set to 0.0.

- `algopt[12]`: Specifies the maximum absolute step size to be allowed in the time integration. If this option is not required, `algopt[12]` should be set to 0.0.
algopt[13]
 Specifies the initial step size to be attempted by the integrator. If algopt[13] = 0.0, then the initial step size is calculated internally.

algopt[14]
 Specifies the maximum number of steps to be attempted by the integrator in any one call. If algopt[14] = 0.0, then no limit is imposed.

algopt[22]
 Specifies what method is to be used to solve the nonlinear equations at the initial point to initialize the values of U, U, V and V. If algopt[22] = 1.0, a modified Newton iteration is used and if algopt[22] = 2.0, functional iteration is used. The default value is algopt[22] = 1.0.

algopt[28] and algopt[29] are used only for the sparse matrix algebra option, laopt = Nag_LinAlgSparse.

algopt[28]
 Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should lie in the range 0.0 < algopt[28] < 1.0, with smaller values biasing the algorithm towards maintaining sparsity at the expense of numerical stability. If algopt[28] lies outside this range then the default value is used. If the functions regard the Jacobian matrix as numerically singular then increasing algopt[28] towards 1.0 may help, but at the cost of increased fill-in. The default value is algopt[28] = 0.1.

algopt[29]
 Is used as a relative pivot threshold during subsequent Jacobian decompositions (see algopt[28]) below which an internal error is invoked. If algopt[29] is greater than 1.0 no check is made on the pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular (see algopt[28]). The default value is algopt[29] = 0.0001.

21:
 rsave[lrsave] – double
 Communication Array

 If ind = 0, rsave need not be set on entry.

 If ind = 1, rsave must be unchanged from the previous call to the function because it contains required information about the iteration.

22:
 lrsave – Integer
 Input

 On entry: the dimension of the array rsave.

 Constraint:

 If laopt = Nag_LinAlgFull, lrsave ≥ neqn × neqn + neqn + nwkres + lenode.

 If laopt = Nag_LinAlgBand, lrsave ≥ (3 × mlu + 1) × neqn + nwkres + lenode.

 If laopt = Nag_LinAlgSparse, lrsave ≥ 4 × neqn + 11 × neqn/2 + 1 + nwkres + lenode.

 Where

 mlu is the lower or upper half bandwidths such that

 mlu = 3 × npde − 1, for PDE problems only (no coupled ODEs); or

 mlu = neqn − 1, for coupled PDE/ODE problems.

 nwkres = \(\begin{cases} \text{npde} \times (2 \times \text{npds} + 6 \times \text{nxi} + 3 \times \text{npde} + 26) + \text{nxi} + \text{ncode} + 7 \times \text{npts} + 2, & \text{when ncode} > 0 \text{ and nxi} > 0; \\
 \text{npde} \times (2 \times \text{npds} + 3 \times \text{npde} + 32) + \text{ncode} + 7 \times \text{npts} + 3, \text{ when ncode} > 0 \text{ and nxi} = 0; \\
 \text{npde} \times (2 \times \text{npds} + 3 \times \text{npde} + 32) + 7 \times \text{npts} + 4, \text{ when ncode} = 0. \end{cases} \)

 lenode = \(\begin{cases} (6 + \text{int(algopt[1])}) \times \text{neqn} + 50, & \text{when the BDF method is used}; \\
 9 \times \text{neqn} + 50, \text{ when the Theta method is used}. \end{cases} \)

Note: when laopt = Nag_LinAlgSparse, the value of lrsave may be too small when supplied to the integrator. An estimate of the minimum size of lrsave is printed on the current error message unit if itrace > 0 and the function returns with fail.code = NE_INT_2.
23: \textbf{isave} – Integer

Communication Array

If \(\text{ind} = 0 \), \text{isave} need not be set on entry.

If \(\text{ind} = 1 \), \text{isave} must be unchanged from the previous call to the function because it contains required information about the iteration. In particular:

- \text{isave}[0]

 Contains the number of steps taken in time.

- \text{isave}[1]

 Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.

- \text{isave}[2]

 Contains the number of Jacobian evaluations performed by the time integrator.

- \text{isave}[3]

 Contains the order of the last backward differentiation formula method used.

- \text{isave}[4]

 Contains the number of Newton iterations performed by the time integrator. Each iteration involves an ODE residual evaluation followed by a back-substitution using the \textit{LU} decomposition of the Jacobian matrix.

24: \textbf{lisave} – Integer

Input

\textit{On entry}: the dimension of the array \text{isave}. Its size depends on the type of matrix algebra selected:

- if \textit{laopt} = \text{Nag} LinAlgFull, \text{lisave} \geq 24;
- if \textit{laopt} = \text{Nag} LinAlgBand, \text{lisave} \geq \text{neqn} + 24;
- if \textit{laopt} = \text{Nag} LinAlgSparse, \text{lisave} \geq 25 \times \text{neqn} + 24.

\textit{Note}: when using the sparse option, the value of \text{lisave} may be too small when supplied to the integrator. An estimate of the minimum size of \text{lisave} is printed if \textit{itrace} > 0 and the function returns with \text{fail.code} = \text{NE_INT_2}.

25: \textbf{itask} – Integer

Input

\textit{On entry}: specifies the task to be performed by the ODE integrator.

\textit{itask} = 1

Normal computation of output values \(u \) at \(t = \text{tout} \).

\textit{itask} = 2

One step and return.

\textit{itask} = 3

Stop at first internal integration point at or beyond \(t = \text{tout} \).

\textit{itask} = 4

Normal computation of output values \(u \) at \(t = \text{tout} \) but without overshooting \(t = t_{\text{crit}} \) where \(t_{\text{crit}} \) is described under the argument \text{algopt}.

\textit{itask} = 5

Take one step in the time direction and return, without passing \(t_{\text{crit}} \), where \(t_{\text{crit}} \) is described under the argument \text{algopt}.

\textit{Constraint}: \textit{itask} = 1, 2, 3, 4 or 5.
itrace – Integer

On entry: the level of trace information required from nag_pde_parab_1d_fd_ode (d03phc) and the underlying ODE solver. \texttt{itrace} may take the value \(-1, 0, 1, 2\) or \(3\).

\texttt{itrace} = -1

No output is generated.

\texttt{itrace} = 0

Only warning messages from the PDE solver are printed.

\texttt{itrace} > 0

Output from the underlying ODE solver is printed. This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.

If \texttt{itrace} < -1, then \(-1\) is assumed and similarly if \texttt{itrace} > 3, then \(3\) is assumed.

The advisory messages are given in greater detail as \texttt{itrace} increases.

outfile – const char *

On entry: the name of a file to which diagnostic output will be directed. If \texttt{outfile} is NULL the diagnostic output will be directed to standard output.

ind – Integer *

On entry: indicates whether this is a continuation call or a new integration.

\texttt{ind} = 0

Starts or restarts the integration in time.

\texttt{ind} = 1

Continues the integration after an earlier exit from the function. In this case, only the arguments \texttt{tout} and \texttt{fail} should be reset between calls to nag_pde_parab_1d_fd_ode (d03phc).

Constraint: \texttt{ind} = 0 or 1.

On exit: \texttt{ind} = 1.

comm – Nag_Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

saved – Nag_D03_Save *

\texttt{saved} must remain unchanged following a previous call to a Chapter d03 function and prior to any subsequent call to a Chapter d03 function.

fail – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in \texttt{atol} or \texttt{rtol} are unlikely to result in a changed solution.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument \(<value>\) had an illegal value.

NE_FAILED_DERIV
In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could be due to your setting \(\text{ires} = 3\) in \texttt{pdedef} or \texttt{bndary}.

NE_FAILED_START
\(\text{atol}\) and \(\text{rtol}\) were too small to start integration.

NE_FAILED_STEP
Error during Jacobian formulation for ODE system. Increase \(\text{itrace}\) for further details.
Repeted errors in an attempted step of underlying ODE solver. Integration was successful as far as \(\text{ts} = \langle value\rangle\).
Underlying ODE solver cannot make further progress from the point \(\text{ts}\) with the supplied values of \(\text{atol}\) and \(\text{rtol}\). \(\text{ts} = \langle value\rangle\).

NE_INCOMPAT_PARAM
On entry, \(\text{m} = \langle value\rangle\) and \(\text{x[0]} = \langle value\rangle\). Constraint: \(\text{m} \leq 0\) or \(\text{x[0]} \geq 0.0\)

NE_INT
\(\text{ires}\) set to an invalid value in call to \texttt{pdedef}, \texttt{bndary}, or \texttt{odedef}.
On entry, \(\text{ind} = \langle value\rangle\). Constraint: \(\text{ind} = 0\) or \(1\).
On entry, \(\text{itask} = \langle value\rangle\). Constraint: \(\text{itask} = 1, 2, 3, 4\) or \(5\).
On entry, \(\text{itol} = \langle value\rangle\). Constraint: \(\text{itol} = 1, 2, 3\) or \(4\).
On entry, \(\text{m} = \langle value\rangle\). Constraint: \(\text{m} = 0, 1\) or \(2\).
On entry, \(\text{ncode} = \langle value\rangle\). Constraint: \(\text{ncode} \geq 0\).
On entry, \(\text{npde} = \langle value\rangle\). Constraint: \(\text{npde} \geq 1\).
On entry, \(\text{npts} = \langle value\rangle\). Constraint: \(\text{npts} \geq 3\).

NE_INT_2
On entry, corresponding elements \(\text{atol}[I - 1]\) and \(\text{rtol}[J - 1]\) are both zero: \(I = \langle value\rangle\) and \(J = \langle value\rangle\).
On entry, \(\text{lisave}\) is too small: \(\text{lisave} = \langle value\rangle\). Minimum possible dimension: \(\langle value\rangle\).
On entry, \(\text{lrsave}\) is too small: \(\text{lrsave} = \langle value\rangle\). Minimum possible dimension: \(\langle value\rangle\).
On entry, \(\text{ncode} = \langle value\rangle\) and \(\text{nxi} = \langle value\rangle\). Constraint: \(\text{nxi} = 0\) when \(\text{ncode} = 0\).
On entry, \(\text{ncode} = \langle value\rangle\) and \(\text{nxi} = \langle value\rangle\). Constraint: \(\text{nxi} \geq 0\) when \(\text{ncode} > 0\).
When using the sparse option \(\text{lisave}\) or \(\text{lrsave}\) is too small: \(\text{lisave} = \langle value\rangle\), \(\text{lrsave} = \langle value\rangle\).
NE_INT_4
On entry, \(\text{neqn} = \langle \text{value} \rangle, \ \text{npde} = \langle \text{value} \rangle, \ \text{npts} = \langle \text{value} \rangle \) and \(\text{ncode} = \langle \text{value} \rangle \).
Constraint: \(\text{neqn} = \text{npde} \times \text{npts} + \text{ncode} \).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
Serious error in internal call to an auxiliary. Increase \(\text{itrace} \) for further details.

NE_ITER_FAIL
In solving ODE system, the maximum number of steps \(\text{algopt}[14] \) has been exceeded.
\(\text{algopt}[14] = \langle \text{value} \rangle \).

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NOT_CLOSE_FILE
Cannot close file \(\langle \text{value} \rangle \).

NE_NOT_STRICTLY_INCREASING
On entry, \(I = \langle \text{value} \rangle, \ \text{xi}[I] = \langle \text{value} \rangle \) and \(\text{xi}[I-1] = \langle \text{value} \rangle \).
Constraint: \(\text{xi}[I] > \text{xi}[I-1] \).
On entry, mesh points \(\text{x} \) appear to be badly ordered: \(I = \langle \text{value} \rangle, \ \text{x}[I-1] = \langle \text{value} \rangle, \ \text{J} = \langle \text{value} \rangle \) and \(\text{x}[J-1] = \langle \text{value} \rangle \).

NE_NOT_WRITE_FILE
Cannot open file \(\langle \text{value} \rangle \) for writing.

NE_REAL_2
On entry, at least one point in \(\text{xi} \) lies outside \(\lbrack \text{x}[0], \text{x}[\text{npts} - 1] \rbrack \): \(\text{x}[0] = \langle \text{value} \rangle \) and \(\text{x}[\text{npts} - 1] = \langle \text{value} \rangle \).
On entry, \(\text{tout} = \langle \text{value} \rangle \) and \(\text{ts} = \langle \text{value} \rangle \).
Constraint: \(\text{tout} > \text{ts} \).
On entry, \(\text{tout} - \text{ts} \) is too small: \(\text{tout} = \langle \text{value} \rangle \) and \(\text{ts} = \langle \text{value} \rangle \).

NE_REAL_ARRAY
On entry, \(I = \langle \text{value} \rangle \) and \(\text{atol}[I-1] = \langle \text{value} \rangle \).\nConstraint: \(\text{atol}[I-1] \geq 0.0 \).
On entry, \(I = \langle \text{value} \rangle \) and \(\text{rtol}[I-1] = \langle \text{value} \rangle \).\nConstraint: \(\text{rtol}[I-1] \geq 0.0 \).

NE_SING_JAC
Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP
Flux function appears to depend on time derivatives.
In evaluating residual of ODE system, $ires = 2$ has been set in pdedef, bndary, or odedef. Integration is successful as far as ts: $ts = (\text{value})$.

Zero error weights encountered during time integration.

7 Accuracy

nag_pde_parab_1d_fd_ode (d03phc) controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy arguments atol and rtol.

8 Parallelism and Performance

nag_pde_parab_1d_fd_ode (d03phc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_pde_parab_1d_fd_ode (d03phc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space direction but there is no guarantee that the method of integration will be satisfactory for such systems. The position and nature of the boundary conditions in particular are critical in defining a stable problem. It may be advisable in such cases to reduce the whole system to first-order and to use the Keller box scheme function nag_pde_parab_1d_keller_ode (d03pkc).

The time taken depends on the complexity of the parabolic system and on the accuracy requested. For a given system and a fixed accuracy it is approximately proportional to neqn.

10 Example

This example provides a simple coupled system of one PDE and one ODE.

\[
(V_1) \frac{\partial U_1}{\partial t} - xV_1 \frac{\partial U_1}{\partial x} = \frac{\partial^2 U_1}{\partial x^2}
\]

\[
\dot{V}_1 = V_1 U_1 + \frac{\partial U_1}{\partial x} + 1 + t,
\]

for $t \in [10^{-4}, 0.1 \times 2^i]; i = 1, 2, \ldots, 5; x \in [0, 1]$.

The left boundary condition at $x = 0$ is

\[
\frac{\partial U_1}{\partial x} = -V_1 \exp t.
\]

The right boundary condition at $x = 1$ is

\[
\frac{\partial U_1}{\partial x} = -V_1 \dot{V}_1.
\]

The initial conditions at $t = 10^{-4}$ are defined by the exact solution:
\[V_1 = t, \quad \text{and} \quad U_1(x, t) = \exp \left\{ t(1 - x) \right\} - 1.0, \quad x \in [0, 1], \]

and the coupling point is at \(\xi_1 = 1.0. \)

10.1 Program Text

```c
/* nag_pde_parab_1d_fd_ode (d03phc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 7, 2001. */
/* Mark 7b revised, 2004. */
*/
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>

#define P(I, J) p[npde*((J) -1)+(I) -1]
#define UCPX(I, J) ucpx[npde*((J) -1)+(I) -1]
#define UCP(I, J) ucp[npde*((J) -1)+(I) -1]

int main(void)
{
  const Integer npde = 1, npts = 21, ncode = 1, m = 0, nxi = 1;
  const Integer neqn = npde*npts+ncode, lisave = 24, lenode = 11*neqn+50;
  const Integer nwkres = npde*(npts+6*nxi+3*npde+15)+ncode+nxi+7*npts+2;
  const Integer lrsave = neqn*neqn+neqn+nwkres+lenode;
  static double ruser[3] = {-1.0, -1.0, -1.0};
  double tout, ts;
  Integer exit_status = 0, i, ind, it, itask, itol, itrace;
  Nag_Boolean theta;
  double *algopt = 0, *atol = 0, *exy = 0, *rsave = 0, *rtol = 0;
  double *u = 0, *x = 0, *xi = 0;
  Integer *isave = 0;
  NagError fail;
  Nag_Comm comm;
  Nag_D03_Save saved;

  INIT_FAIL(fail);

  printf("d03phc.18 Mark 25")
```

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Allocate memory */
if (!(algopt = NAG_ALLOC(30, double)) ||
! (atol = NAG_ALLOC(1, double)) ||
! (exy = NAG_ALLOC(npts, double)) ||
! (rsave = NAG_ALLOC(lrsave, double)) ||
! (rtol = NAG_ALLOC(1, double)) ||
! (u = NAG_ALLOC(neqn, double)) ||
! (x = NAG_ALLOC(npts, double)) ||
! (xi = NAG_ALLOC(1, double)) ||
! (isave = NAG_ALLOC(lisave, Integer)))
{
 printf("Allocation failure\n");
 exit_status = 1;
 goto END;
}

itrace = 0;
itol = 1;
atol[0] = 1e-4;
rtol[0] = atol[0];

printf("Simple coupled PDE using BDF\n");
printf("Accuracy requirement =%12.3e", atol[0]);
printf("Number of points = %4"NAG_IFMT"\n\n", npts);

/* Set break-points */
for (i = 0; i < npts; ++i)
{
 x[i] = i/(npts-1.0);
}

xi[0] = 1.0;
ind = 0;
itask = 1;

/* Set theta = TRUE if the Theta integrator is required */
theta = Nag_FALSE;
for (i = 0; i < 30; ++i) algopt[i] = 0.0;
if (theta) algopt[0] = 2.0;

/* Loop over output value of t */
ts = 1e-4;
tout = 0.0;
printf("x %9.3f%9.3f%9.3f%9.3f%9.3f\n\n",
 x[0], x[4], x[8], x[12], x[20]);
uvinit(npde, npts, x, u, npde, neqn, ts);
for (it = 0; it < 5; ++it)
{
 tout = 0.1*pow(2.0, (it+1.0));
 /* nag_pde_parab_1d_fd_ode (d03phc). *
 * General system of parabolic PDEs, coupled DAEs, method of *
 * lines, finite differences, one space variable *
 */
 nag_pde_parab_1d_fd_ode(npde, m, &ts, tout, pdedef, bndary, u, npts, x,
 ncode, odedef, nxi, xi, neqn, rtol, atol, itol,
 Nag_TwoNorm, Nag_LinAlgFull, algopt, rsave,
 lrsave, isave, lisave, itask, itrace, 0, &ind,
 &comm, &saved, &fail);
}
if (fail.code != NE_NOERROR)
{
}
printf("Error from nag_pde_parab_1d_fd_ode (d03phc).
", fail.message);
exit_status = 1;
goto END;
}

/* Check against the exact solution */
exact(tout, npts, x, exy);
printf(" t = %6.3f\n", ts);
printf(" App. sol. %7.3f%9.3f%9.3f%9.3f%9.3f",
 u[0], u[4], u[8], u[12], u[20]);
printf(" ODE sol. +%8.3f\n", u[21]);
printf(" Exact sol. %7.3f%9.3f%9.3f%9.3f%9.3f",
 exy[0], exy[4], exy[8], exy[12], exy[20]);
printf(" ODE sol. +%8.3f\n", ts);
}

printf(" Number of integration steps in time = %6"NAG_IFMT"\n", isave[0]);
printf(" Number of function evaluations = %6"NAG_IFMT"\n", isave[1]);
printf(" Number of Jacobian evaluations =%6"NAG_IFMT"\n", isave[2]);
printf(" Number of iterations = %6"NAG_IFMT"\n", isave[4]);
END:
NAG_FREE(algopt);
NAG_FREE(atol);
NAG_FREE(exy);
NAG_FREE(rsave);
NAG_FREE(rtol);
NAG_FREE(u);
NAG_FREE(x);
NAG_FREE(xi);
NAG_FREE(isave);
return exit_status;
}

static void NAG_CALL pdef(Integer npde, double t, double x, const double u[],
 const double ux[], Integer ncode, const double v[],
 const double vdot[], double p[], double q[],
 double r[], Integer *ires, Nag_Comm *comm)
{
 if (comm->user[0] == -1.0)
 {
 printf("(User-supplied callback pdef, first invocation.)\n");
 comm->user[0] = 0.0;
 }
 P(1, 1) = v[0] * v[0];
 r[0] = ux[0];
 q[0] = -(x) * ux[0] * v[0] * vdot[0];
 return;
}

static void NAG_CALL bndary(Integer npde, double t, const double u[],
 const double ux[], Integer ncode, const double v[],
 const double vdot[], Integer ibnd, double beta[],
 double gamma[], Integer *ires, Nag_Comm *comm)
{
 if (comm->user[1] == -1.0)
 {
 printf("(User-supplied callback bndary, first invocation.)\n");
 comm->user[1] = 0.0;
 }
 beta[0] = 1.0;
 if (ibnd == 0)
 {
 gamma[0] = -v[0]*exp(t);
 }
 else
 {

gamma[0] = -v[0]*vdot[0];
}
return;

static void NAG_CALL odedef(Integer npde, double t, Integer ncode,
 const double v[], const double vdot[], Integer nxi,
 const double xi[], const double ucp[],
 const double ucpx[], const double rcp[],
 const double ucpt[], const double ucptx[],
 double f[], Integer *ires, Nag_Comm *comm)
{
 if (comm->user[2] == -1.0)
 {
 printf("(User-supplied callback odedef, first invocation.)\n"");
 comm->user[2] = 0.0;
 }
 if (*ires == 1)
 {
 f[0] = vdot[0] - v[0] * UCP(1, 1) - UCPX(1, 1) - 1.0 - t;
 }
 else if (*ires == -1)
 {
 f[0] = vdot[0];
 }
 return;
}

static void NAG_CALL uvinit(Integer npde, Integer npts, double *x, double *u,
 Integer ncode, Integer neqn, double ts)
{
 /* Routine for PDE initial values */
 Integer i;
 for (i = 0; i < npts; ++i)
 {
 u[i] = exp(ts* (1.0 - x[i])) - 1.0;
 }
 u[neqn-1] = ts;
 return;
}

static void NAG_CALL exact(double time, Integer npts, double *x, double *u)
{
 /* Exact solution (for comparison purpose) */
 Integer i;
 for (i = 0; i < npts; ++i)
 {
 u[i] = exp(time*(1.0 - x[i])) - 1.0;
 }
 return;
}

10.2 Program Data
None.
10.3 Program Results

nag_pde_parab_1d_fd_ode (d03phc) Example Program Results

Simple coupled PDE using BDF
Accuracy requirement = 1.000e-04 Number of points = 21

x 0.000 0.200 0.400 0.600 1.000

(User-supplied callback bndary, first invocation.)
(User-supplied callback pdedef, first invocation.)
(User-supplied callback odedef, first invocation.)

\[t = 0.200 \]

App. sol. 0.222 0.174 0.128 0.084 0.001 ODE sol. = 0.200
Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200

\[t = 0.400 \]

App. sol. 0.494 0.379 0.273 0.176 0.002 ODE sol. = 0.400
Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400

\[t = 0.800 \]

App. sol. 1.229 0.901 0.622 0.384 0.008 ODE sol. = 0.798
Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800

\[t = 1.600 \]

App. sol. 3.959 2.610 1.629 0.917 0.027 ODE sol. = 1.594
Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600

\[t = 3.200 \]

App. sol. 23.469 11.974 5.885 2.665 0.074 ODE sol. = 3.184
Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200

Number of integration steps in time = 33
Number of function evaluations = 470
Number of Jacobian evaluations = 16
Number of iterations = 111
Example Program
Parabolic PDE Coupled with ODE using Finite-differences and BDF