NAG Library Function Document

nag_pde_parab_1d_fd (d03pcc)

1 Purpose

nag_pde_parab_1d_fd (d03pcc) integrates a system of linear or nonlinear parabolic partial differential equations (PDEs) in one space variable. The spatial discretization is performed using finite differences, and the method of lines is employed to reduce the PDEs to a system of ordinary differential equations (ODEs). The resulting system is solved using a backward differentiation formula method.

2 Specification

```c
#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_fd (Integer npde, Integer m, double *ts, double tout,
                      void (*pdedef)(Integer npde, double t, double x, const double u[],
                                      const double ux[], double p[], double q[], double r[],
                                      Integer *ires, Nag_Comm *comm),
                      void (*bndary)(Integer npde, double t, const double u[],
                                     const double ux[], Integer ibnd, double beta[], double gamma[],
                                     Integer *ires, Nag_Comm *comm),
                      double u[], Integer npts, const double x[], double acc, double rsave[],
                      Integer lrsave, Integer isave[], Integer lisave, Integer itask,
                      Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
                      Nag_D03_Save *saved, NagError *fail)
```

3 Description

nag_pde_parab_1d_fd (d03pcc) integrates the system of parabolic equations:

\[
\sum_{j=1}^{\text{npde}} P_{i,j} \frac{\partial U_j}{\partial t} + Q_i = x^{-m} \frac{\partial}{\partial x} (x^m R_i), \quad i = 1, 2, \ldots, \text{npde}, \quad a \leq x \leq b, \quad t \geq t_0, \quad (1)
\]

where \(P_{i,j}, Q_i \) \ and \(R_i \) depend on \(x, t, U, U_x \) and the vector \(U \) is the set of solution values

\[
U(x, t) = [U_1(x, t), \ldots, U_{\text{npde}}(x, t)]^T, \quad (2)
\]

and the vector \(U_x \) is its partial derivative with respect to \(x \). Note that \(P_{i,j}, Q_i \) \ and \(R_i \) must not depend on \(\frac{\partial U}{\partial t} \).

The integration in time is from \(t_0 \) to \(t_{\text{out}} \), over the space interval \(a \leq x \leq b \), where \(a = x_1 \) \ and \(b = x_{\text{npts}} \) are the leftmost and rightmost points of a user-defined mesh \(x_1, x_2, \ldots, x_{\text{npts}} \). The coordinate system in space is defined by the value of \(m \); \(m = 0 \) for Cartesian coordinates, \(m = 1 \) for cylindrical polar coordinates and \(m = 2 \) for spherical polar coordinates. The mesh should be chosen in accordance with the expected behaviour of the solution.

The system is defined by the functions \(P_{i,j}, Q_i \) \ and \(R_i \) which must be specified in pdedef.

The initial values of the functions \(U(x, t) \) must be given at \(t = t_0 \). The functions \(R_i \), for \(i = 1, 2, \ldots, \text{npde} \), which may be thought of as fluxes, are also used in the definition of the boundary conditions for each equation. The boundary conditions must have the form

\[
\beta_i(x, t)R_i(x, t, U, U_x) = \gamma_i(x, t, U, U_x), \quad i = 1, 2, \ldots, \text{npde}, \quad (3)
\]

where \(x = a \) \ or \(x = b \).

The boundary conditions must be specified in bndary.
The problem is subject to the following restrictions:

(i) $t_0 < t_{\text{out}}$, so that integration is in the forward direction;

(ii) $P_{i,j}$, Q_i, and the flux R_i must not depend on any time derivatives;

(iii) the evaluation of the functions $P_{i,j}$, Q_i and R_i is done at the mid-points of the mesh intervals by calling the `pdedef` for each mid-point in turn. Any discontinuities in these functions must therefore be at one or more of the mesh points $x_1, x_2, \ldots, x_{npts}$;

(iv) at least one of the functions $P_{i,j}$ must be nonzero so that there is a time derivative present in the problem; and

(v) if $m > 0$ and $x_1 = 0.0$, which is the left boundary point, then it must be ensured that the PDE solution is bounded at this point. This can be done by either specifying the solution at $x = 0.0$ or by specifying a zero flux there, that is $\beta_i = 1.0$ and $\gamma_i = 0.0$. See also Section 9.

The parabolic equations are approximated by a system of ODEs in time for the values of U_i at mesh points. For simple problems in Cartesian coordinates, this system is obtained by replacing the space derivatives by the usual central, three-point finite difference formula. However, for polar and spherical problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified three-point formula which maintains second-order accuracy. In total there are $npde \times npts$ ODEs in the time direction. This system is then integrated forwards in time using a backward differentiation formula method.

4 References

5 Arguments

1: npde – Integer

 On entry: the number of PDEs in the system to be solved.

 Constraint: npde ≥ 1.

2: m – Integer

 On entry: the coordinate system used:

 $m = 0$

 Indicates Cartesian coordinates.

 $m = 1$

 Indicates cylindrical polar coordinates.

 $m = 2$

 Indicates spherical polar coordinates.

 Constraint: $m = 0$, 1 or 2.

3: ts – double *

 On entry: the initial value of the independent variable t.

 Input/Output
On exit: the value of t corresponding to the solution values in u. Normally $ts = tout$.

Constraint: $ts < tout$.

4: **tout** – double
Input

On entry: the final value of t to which the integration is to be carried out.

5: **pdef** – function, supplied by the user
External Function

`pdef` must compute the functions P_{ij}, Q_i and R_i which define the system of PDEs. `pdef` is called approximately midway between each pair of mesh points in turn by `nag_pde_parab_1d_fd (d03pcc)`.

The specification of `pdef` is:

```c
void pdef (Integer npde, double t, double x, const double u[],
           const double ux[], double p[], double q[], double r[],
           Integer *ires, Nag_Comm *comm)
```

1: **npde** – Integer
Input

On entry: the number of PDEs in the system.

2: **t** – double
Input

On entry: the current value of the independent variable t.

3: **x** – double
Input

On entry: the current value of the space variable x.

4: **u[npde]** – const double
Input

On entry: $u[i - 1]$ contains the value of the component $U_i(x, t)$, for $i = 1, 2, \ldots, npde$.

5: **ux[npde]** – const double
Input

On entry: $ux[i - 1]$ contains the value of the component $\frac{\partial U_i(x, t)}{\partial x}$, for $i = 1, 2, \ldots, npde$.

6: **p[npde x npde]** – double
Output

On exit: $p[npde x (j - 1) + i - 1]$ must be set to the value of $P_{ij}(x, t, U, U_x)$, for $i = 1, 2, \ldots, npde$ and $j = 1, 2, \ldots, npde$.

7: **q[npde]** – double
Output

On exit: $q[i - 1]$ must be set to the value of $Q_i(x, t, U, U_x)$, for $i = 1, 2, \ldots, npde$.

8: **r[npde]** – double
Output

On exit: $r[i - 1]$ must be set to the value of $R_i(x, t, U, U_x)$, for $i = 1, 2, \ldots, npde$.

9: **ires** – Integer *
Input/Output

On entry: set to -1 or 1.

On exit: should usually remain unchanged. However, you may set `ires` to force the integration function to take certain actions as described below:

`ires = 2`
Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to `fail.code = NE_USER_STOP`.

Mark 25
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set $\texttt{ires} = 3$ when a physically meaningless input or output value has been generated. If you consecutively set $\texttt{ires} = 3$, then nag_pde_parab_1d_fd (d03pcc) returns to the calling function with the error indicator set to $\texttt{fail.code} = \text{NE_FAILED_DERIV}$.

comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to pdef.

user – double *

iuser – Integer *

p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_fd (d03pcc) you may allocate memory and initialize these pointers with various quantities for use by pdef when called from nag_pde_parab_1d_fd (d03pcc) (see Section 3.2.1.1 in the Essential Introduction).

bndary – function, supplied by the user

External Function

bndary must compute the functions β_i and γ_i which define the boundary conditions as in equation (3).

The specification of bndary is:

```c
void bndary (Integer npde, double t, const double u[],
            const double ux[], Integer ibnd, double beta[], double gamma[],
            Integer *ires, Nag_Comm *comm)
```

1: npde – Integer

Input

On entry: the number of PDEs in the system.

2: t – double

Input

On entry: the current value of the independent variable t.

3: u[npde] – const double

Input

On entry: $u[i-1]$ contains the value of the component $U_i(x,t)$ at the boundary specified by ibnd, for $i = 1,2,\ldots,\text{npde}$.

4: ux[npde] – const double

Input

On entry: $ux[i-1]$ contains the value of the component $\frac{\partial U_i(x,t)}{\partial x}$ at the boundary specified by ibnd, for $i = 1,2,\ldots,\text{npde}$.

5: ibnd – Integer

Input

On entry: determines the position of the boundary conditions.

ibnd = 0

bndary must set up the coefficients of the left-hand boundary, $x = a$.

ibnd $\neq 0$

Indicates that bndary must set up the coefficients of the right-hand boundary, $x = b$.

$\texttt{ires} \neq 0$
6: \(\beta_{[i-1]} \) – double

Output

On exit: \(\beta_{[i-1]} \) must be set to the value of \(\beta_i(x,t) \) at the boundary specified by \(\text{ibnd} \), for \(i = 1, 2, \ldots, \text{npde} \).

7: \(\gamma_{[i-1]} \) – double

Output

On exit: \(\gamma_{[i-1]} \) must be set to the value of \(\gamma_i(x,t,U,U_x) \) at the boundary specified by \(\text{ibnd} \), for \(i = 1, 2, \ldots, \text{npde} \).

8: \(\text{ires} \) – Integer *

Input/Output

On entry: set to -1 or 1.

On exit: should usually remain unchanged. However, you may set \(\text{ires} \) to force the integration function to take certain actions as described below:

- \(\text{ires} = 2 \)
 Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to \(\text{fail.code} = \text{NE_USER_STOP} \).

- \(\text{ires} = 3 \)
 Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set \(\text{ires} = 3 \) when a physically meaningless input or output value has been generated. If you consecutively set \(\text{ires} = 3 \), then \text{nag_pde_parab_1d_fd (d03pcc)} returns to the calling function with the error indicator set to \(\text{fail.code} = \text{NE_FAILED_DERIV} \).

9: \(\text{comm} \) – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to \(\text{bndary} \).

- \(\text{user} \) – double *
- \(\text{iuser} \) – Integer *
- \(\text{p} \) – Pointer

The type Pointer will be \text{void} *. Before calling \text{nag_pde_parab_1d_fd (d03pcc)} you may allocate memory and initialize these pointers with various quantities for use by \text{bndary} when called from \text{nag_pde_parab_1d_fd (d03pcc)} (see Section 3.2.1.1 in the Essential Introduction).

7: \(\text{u[\text{npde} \times \text{npts}]} \) – double

Input/Output

On entry: the initial values of \(U(x,t) \) at \(t = \text{ts} \) and the mesh points \(x[j-1] \), for \(j = 1, 2, \ldots, \text{npts} \).

On exit: \(\text{u[\text{npde} \times (j - 1) + i - 1]} \) will contain the computed solution at \(t = \text{ts} \).

8: \(\text{npts} \) – Integer

Input

On entry: the number of mesh points in the interval \([a,b]\).

Constraint: \(\text{npts} \geq 3 \).

9: \(\text{x[\text{npts}]} \) – const double

Input

On entry: the mesh points in the spatial direction. \(x[0] \) must specify the left-hand boundary, \(a \), and \(x[\text{npts} - 1] \) must specify the right-hand boundary, \(b \).

Constraint: \(x[0] < x[1] < \cdots < x[\text{npts} - 1] \).

10: \(\text{acc} \) – double

Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If \(E(i,j) \) is the estimated error for \(U_i \) at the \(j \)th mesh point, the error test is:
\[|E(i, j)| = \text{acc} \times (1.0 + |u|_{\text{npde}} \times (j - 1) + i - 1)|. \]

Constraint: \(\text{acc} > 0.0 \).

11: **rsave[lrsave]** – double

Communication Array

If **ind** = 0, **rsave** need not be set on entry.

If **ind** = 1, **rsave** must be unchanged from the previous call to the function because it contains required information about the iteration.

12: **lrsave** – Integer

Input

On entry: the dimension of the array **rsave**.

Constraint: \(lrsave \geq (6 \times npde + 10) \times \text{npde} \times \text{npts} + (3 \times \text{npde} + 21) \times \text{npde} + 7 \times \text{npts} + 54 \).

13: **isave[lisave]** – Integer

Communication Array

If **ind** = 0, **isave** need not be set on entry.

If **ind** = 1, **isave** must be unchanged from the previous call to the function because it contains required information about the iteration. In particular:

isave[0]
- Contains the number of steps taken in time.

isave[1]
- Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.

isave[2]
- Contains the number of Jacobian evaluations performed by the time integrator.

isave[3]
- Contains the order of the last backward differentiation formula method used.

isave[4]
- Contains the number of Newton iterations performed by the time integrator. Each iteration involves an ODE residual evaluation followed by a back-substitution using the \(LU \) decomposition of the Jacobian matrix.

14: **lisave** – Integer

Input

On entry: the dimension of the array **isave**.

Constraint: \(lisave \geq \text{npde} \times \text{npts} + 24 \).

15: **itask** – Integer

Input

On entry: specifies the task to be performed by the ODE integrator.

itask = 1
- Normal computation of output values \(u \) at \(t = \text{tout} \).

itask = 2
- One step and return.

itask = 3
- Stop at first internal integration point at or beyond \(t = \text{tout} \).

Constraint: \(\text{itask} = 1, 2 \) or \(3 \).
itrace – Integer
Input

On entry: the level of trace information required from nag_pde_parab_1d_fd (d03pcc) and the underlying ODE solver. *itrace* may take the value −1, 0, 1, 2 or 3.

itrace = −1
No output is generated.

itrace = 0
Only warning messages from the PDE solver are printed.

itrace > 0
Output from the underlying ODE solver is printed. This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.

If *itrace* < −1, then −1 is assumed and similarly if *itrace* > 3, then 3 is assumed.

The advisory messages are given in greater detail as *itrace* increases.

outfile – const char *
Input

On entry: the name of a file to which diagnostic output will be directed. If *outfile* is NULL the diagnostic output will be directed to standard output.

ind – Integer *
Input/Output

On entry: indicates whether this is a continuation call or a new integration.

ind = 0
Starts or restarts the integration in time.

ind = 1
Continues the integration after an earlier exit from the function. In this case, only the arguments tout and fail should be reset between calls to nag_pde_parab_1d_fd (d03pcc).

Constraint: *ind* = 0 or 1.

On exit: *ind* = 1.

comm – Nag_Comm *
The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

saved – Nag_D03_Save *
Communication Structure

saved must remain unchanged following a previous call to a Chapter d03 function and prior to any subsequent call to a Chapter d03 function.

fail – NagError *
Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT
Integration completed, but a small change in acc is unlikely to result in a changed solution.
acc = (value).

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument \(\langle value\rangle\) had an illegal value.

NE_FAILED_DERIV
In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could be due to your setting \(ires = 3\) in pdef or bnd.

NE_FAILED_START
\(acc\) was too small to start integration: \(acc = \langle value\rangle\).

NE_FAILED_STEP
Error during Jacobian formulation for ODE system. Increase \(itrace\) for further details.
Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as \(ts\): \(ts = \langle value\rangle\).
Underlying ODE solver cannot make further progress from the point \(ts\) with the supplied value of \(acc\). \(ts = \langle value\rangle\), \(acc = \langle value\rangle\).

NE_INCOMPAT_PARAM
On entry, \(m = \langle value\rangle\) and \(x[0] = \langle value\rangle\).
Constraint: \(m \leq 0\) or \(x[0] \geq 0.0\)

NE_INT
\(ires\) set to an invalid value in call to pdef or bnd.
On entry, \(ind = \langle value\rangle\).
Constraint: \(ind = 0\) or \(1\).
On entry, \(itask = \langle value\rangle\).
Constraint: \(itask = 1, 2\) or \(3\).
On entry, \(m = \langle value\rangle\).
Constraint: \(m = 0, 1\) or \(2\).
On entry, \(npde = \langle value\rangle\).
Constraint: \(npde \geq 1\).
On entry, \(npts = \langle value\rangle\).
Constraint: \(npts \geq 3\).

NE_INT_2
On entry, \(lisave\) is too small: \(lisave = \langle value\rangle\). Minimum possible dimension: \(\langle value\rangle\).
On entry, \(lrsave\) is too small: \(lrsave = \langle value\rangle\). Minimum possible dimension: \(\langle value\rangle\).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
Serious error in internal call to an auxiliary. Increase \(itrace\) for further details.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.
NE_NOT_CLOSE_FILE
Cannot close file ⟨value⟩.

NE_NOT STRICTLY_INCREASING
On entry, mesh points x appear to be badly ordered: I = ⟨value⟩, x[I - 1] = ⟨value⟩, J = ⟨value⟩ and x[J - 1] = ⟨value⟩.

NE_NOT_WRITE_FILE
Cannot open file ⟨value⟩ for writing.

NE_REAL
On entry, acc = ⟨value⟩.
Constraint: acc > 0.0.

NE_REAL_2
On entry, tout = ⟨value⟩ and ts = ⟨value⟩.
Constraint: tout > ts.
On entry, tout - ts is too small: tout = ⟨value⟩ and ts = ⟨value⟩.

NE_SING_JAC
Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP
Flux function appears to depend on time derivatives.

NE_USER_STOP
In evaluating residual of ODE system, ires = 2 has been set in pdef or bndary. Integration is successful as far as ts: ts = ⟨value⟩.

7 Accuracy
nag_pde_parab_1d_fd (d03pcc) controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy argument, acc.

8 Parallelism and Performance
nag_pde_parab_1d_fd (d03pcc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_pde_parab_1d_fd (d03pcc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.
9 Further Comments

nag_pde_parab_1d_fd (d03pcc) is designed to solve parabolic systems (possibly including some elliptic equations) with second-order derivatives in space. The argument specification allows you to include equations with only first-order derivatives in the space direction but there is no guarantee that the method of integration will be satisfactory for such systems. The position and nature of the boundary conditions in particular are critical in defining a stable problem. It may be advisable in such cases to reduce the whole system to first-order and to use the Keller box scheme function nag_pde_parab_1d_keller (d03pec).

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

We use the example given in Dew and Walsh (1981) which consists of an elliptic-parabolic pair of PDEs. The problem was originally derived from a single third-order in space PDE. The elliptic equation is

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial U_1}{\partial r} \right) = 4\alpha \left(U_2 + r \frac{\partial U_2}{\partial r} \right)
\]

and the parabolic equation is

\[
(1 - r^2) \frac{\partial U_2}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \left(\frac{\partial U_2}{\partial r} - U_1 \right) \right)
\]

where \((r, t) \in [0, 1] \times [0, 1]\). The boundary conditions are given by

\[
U_1 = \frac{\partial U_2}{\partial r} = 0 \quad \text{at} \quad r = 0,
\]

and

\[
\frac{\partial}{\partial r}(rU_1) = 0 \quad \text{and} \quad U_2 = 0 \quad \text{at} \quad r = 1.
\]

The first of these boundary conditions implies that the flux term in the second PDE, \(\left(\frac{\partial U_2}{\partial r} - U_1 \right) \), is zero at \(r = 0 \).

The initial conditions at \(t = 0 \) are given by

\[
U_1 = 2\alpha r \quad \text{and} \quad U_2 = 1.0, \quad r \in [0, 1].
\]

The value \(\alpha = 1 \) was used in the problem definition. A mesh of 20 points was used with a circular mesh spacing to cluster the points towards the right-hand side of the spatial interval, \(r = 1 \).

10.1 Program Text

/* nag_pde_parab_1d_fd (d03pcc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group.
 * *
 * Mark 7b revised, 2004.
 * Mark 23 revised, 2011.
 */
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>
#include <nagz01.h>
```c
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL pdef(Integer, double, double, const double[],
  const double[], double[], double[], double[],
  Integer *, Nag_Comm *);
static void NAG_CALL bndary(Integer, double, const double[], const double[],
  Integer, double[], double[], Integer *, Nag_Comm *);
static int NAG_CALL uinit(double *, double *, Integer, Integer, double);
#ifdef __cplusplus}
#endif

int main(void)
{
  const Integer npts = 20, npde = 2, neqn = npts*npde, intpts = 6, itype = 1;
  const Integer nwk = (10+6*npde)*neqn, lisave = neqn+24;
  const Integer lrsave = nwk+(21+3*npde)*npde+7*npnts+54;
  Integer exit_status = 0, i, ind, it, itask, itrace, m;
  double acc, alpha, hx, piby2, tout, ts;
  double xout[6] = { 0., .4, .6, .8, .9, 1. };
  double *rsave = 0, *u = 0, *uout = 0, *x = 0;
  Integer *isave = 0;
  NagError fail;
  Nag_Comm comm;
  Nag_D03_Save saved;

  INIT_FAIL(fail);
  printf("nag_pde_parab_1d_fd (d03pcc) Example Program Results\n\n");
  /* For communication with user-supplied functions: */
  comm.user = ruser;
  /* Allocate memory */
  if (!((rsave = NAG_ALLOC(lrsave, double)) ||
       !(u = NAG_ALLOC(npde*npts, double)) ||
       !(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
       !(x = NAG_ALLOC(npts, double)) ||
       !(isave = NAG_ALLOC(lisave, Integer))))
  {
    printf("Allocation failure\n");
    exit_status = 1;
    goto END;
  }
  acc = 0.001;
  m = 1;
  itrace = 0;
  alpha = 1.0;
  comm.p = (Pointer)&alpha;
  ind = 0;
  itask = 1;
  /* Set spatial mesh points */
  piby2 = 0.5*nag_pi;
  hx = piby2/((double)(npts-1));
  x[0] = 0.0;
  x[npts-1] = 1.0;
  for (i = 1; i < npts-1; ++i) x[i] = sin(hx*i);
  /* Set initial conditions */
  ts = 0.0;
  tout = le-5;
  printf("Accuracy requirement = %12.5f\n", acc);
  printf("Parameter alpha = %10.3f\n", alpha);

  /* Further program code */

END:
```
for (i = 0; i < intpts; ++i) printf("%8.4f", xout[i]);
printf("\n");

/* Set the initial values */
uinit(u, x, npde, npts, alpha);
for (it = 0; it < 5; ++it)
{
 tout *= 10.0;
 /* Solve for next iteration step using
 * nag_pde_parab_1d_fd (d03pcc).
 * General system of parabolic PDEs, method of lines, finite
 * differences, one space variable
 */
 nag_pde_parab_1d_fd(npde, m, &ts, tout, pdedef, bndary, u, npts, x, acc,
 rsave, lrsave, isave, lisave, itask, itrace, 0, &ind,
 &comm, &saved, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_pde_parab_1d_fd (d03pcc).\n%s\n",
 fail.message);
 exit_status = 1;
 goto END;
 }
 /* Interpolate at required spatial points using
 * nag_pde_interp_1d_fd (d03pzc).
 * PDEs, spatial interpolation fo use with the suite of routines
 * nag_pde_parab_1d (d03p).
 */
 nag_pde_interp_1d_fd(npde, m, u, npts, x, xout, intpts, 1, uout, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_pde_interp_1d_fd (d03pzc).\n%s\n",
 fail.message);
 exit_status = 1;
 goto END;
 }
 printf("%6.4f u(1)", tout);
 for (i = 0; i < intpts; ++i) printf("%8.4f", uout[npde*i]);
 printf("%6s u(2)\n","");
 for (i = 0; i < intpts; ++i) printf("%8.4f", uout[npde*i+1]);
 printf("\n");
}

/* Print integration statistics */
printf("\n %55s%4"NAG_IFMT"\n", "Number of integration steps in time", isave[0]);
printf(" %55s%4"NAG_IFMT"\n", "Number of residual evaluations of"
 " resulting ODE system", isave[1]);
printf(" %55s%4"NAG_IFMT"\n", "Number of Jacobian evaluations", isave[2]);
printf(" %55s%4"NAG_IFMT"\n", "Number of iterations of nonlinear solver", isave[4]);
END:
NAG_FREE(rsave);
NAG_FREE(u);
NAG_FREE(uout);
NAG_FREE(x);
NAG_FREE(isave);
return exit_status;
static int NAG_CALL uinit(double *u, double *x, Integer npde, Integer npts, double alpha)
{
 Integer i;
 /* Initial conditions for u1 */
 for (i = 0; i < npts; ++i) u[i*npde] = alpha*2.0*x[i];
 /* Initial conditions for u2 */
 for (i = 0; i < npts; ++i) u[i*npde+1] = 1.0;
 return 0;
}

static void NAG_CALL pdedef(Integer npde, double t, double x, const double u[],
 const double ux[], double p[], double q[],
 double r[], Integer *ires, Nag_Comm *comm)
{
 /* PDE coefficients */
 double *alpha = (double *) comm->p;
 if (comm->user[0] == -1.0)
 {
 printf("(User-supplied callback pdedef, first invocation.)\n");
 comm->user[0] = 0.0;
 }
 /* Coefficients on first PDE */
 q[0] = *alpha*4.0*(u[1]+x*ux[1]);
 r[0] = x*ux[0];
 p[0] = 0.0;
 p[npde] = 0.0;
 /* Coefficients on first PDE */
 q[1] = 0.0;
 r[1] = ux[1] - u[0] * u[1];
 p[1] = 0.0;
 p[1+npde] = 1.0-x*x;
 return;
}

static void NAG_CALL bndary(Integer npde, double t, const double u[],
 const double ux[], Integer ibnd, double beta[],
 double gamma[], Integer *ires, Nag_Comm *comm)
{
 /* Boundary conditions */
 if (comm->user[1] == -1.0)
 {
 printf("(User-supplied callback bndary, first invocation.)\n");
 comm->user[1] = 0.0;
 }
 if (ibnd == 0)
 {
 /* u[0] = 0 */
 beta[0] = 0.0;
 gamma[0] = u[0];
 beta[1] = 1.0;
 gamma[1] = -u[0]*u[1];
 }
 else
 {
 /* d(x*u[0])/dx = x*ux[0] + u[0] = 0 */
 beta[0] = 1.0;
 gamma[0] = -u[0];
 /* u[1] = 0 */
 }
beta[1] = 0.0;
gamma[1] = u[1];
}
return;
}

10.2 Program Data

None.

10.3 Program Results

nag_pde_parab_1d_fd (d03pcc) Example Program Results

Accuracy requirement = 0.00100
Parameter alpha = 1.000

t / x 0.0000 0.4000 0.6000 0.8000 0.9000 1.0000
(User-supplied callback bndary, first invocation.)
(User-supplied callback pdedef, first invocation.)

0.0001 u(1) 0.0000 0.8008 1.1988 1.5990 1.7958 1.8485
 u(2) 0.9997 0.9995 0.9994 0.9988 0.9663 -0.0000

0.0010 u(1) 0.0000 0.7982 1.1940 1.5841 1.7179 1.6734
 u(2) 0.9969 0.9952 0.9937 0.9484 0.6385 -0.0000

0.0100 u(1) 0.0000 0.7676 1.1239 1.3547 1.3635 1.2830
 u(2) 0.9627 0.9495 0.8754 0.5537 0.2908 -0.0000

0.1000 u(1) 0.0000 0.3908 0.5007 0.5297 0.5120 0.4744
 u(2) 0.5468 0.4299 0.2995 0.1479 0.0724 -0.0000

1.0000 u(1) 0.0000 0.0007 0.0008 0.0008 0.0008 0.0007
 u(2) 0.0010 0.0007 0.0005 0.0002 0.0001 -0.0000

Number of integration steps in time 78
Number of residual evaluations of resulting ODE system 378
Number of Jacobian evaluations 25
Number of iterations of nonlinear solver 190
Example Program
Solution, $U(1,x,t)$, of Elliptic-parabolic Pair using Method of Lines and BDF Method

Solution, $U(2,x,t)$, of Elliptic-parabolic Pair using Finite-differences and BDF