NAG Library Function Document

nag_ode_bvp_ps_lin_quad_weights (d02uyc)

1 Purpose

nag_ode_bvp_ps_lin_quad_weights (d02uyc) obtains the weights for Clenshaw–Curtis quadrature at Chebyshev points. This allows for fast approximations of integrals for functions specified on Chebyshev Gauss–Lobatto points on \([-1,1]\).

2 Specification

```c
#include <nag.h>
#include <nagd02.h>
void nag_ode_bvp_ps_lin_quad_weights (Integer n, double w[], NagError *fail)
```

3 Description

nag_ode_bvp_ps_lin_quad_weights (d02uyc) obtains the weights for Clenshaw–Curtis quadrature at Chebyshev points.

Given the (Clenshaw–Curtis) weights \(w_i\), for \(i = 0,1,\ldots,n\), and function values \(f_i = f(t_i)\) (where \(t_i = \cos(i \pi/n)\), for \(i = 0,1,\ldots,n\), are the Chebyshev Gauss–Lobatto points), then

\[
\int_{-1}^{1} f(x)dx \approx \sum_{i=0}^{n} w_i f_i.
\]

For a function discretized on a Chebyshev Gauss–Lobatto grid on \([a,b]\) the resultant summation must be multiplied by the factor \((b-a)/2\).

4 References

5 Arguments

1: \(n\) – Integer

 Input

 On entry: \(n\), where the number of grid points is \(n + 1\).

 Constraint: \(n > 0\) and \(n\) is even.

2: \(w[n+1]\) – double

 Output

 On exit: the Clenshaw–Curtis quadrature weights, \(w_i\), for \(i = 0,1,\ldots,n\).

3: \(fail\) – NagError *

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n > 0 \).

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \) is even.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The accuracy should be close to \textit{machine precision}.

8 Parallelism and Performance
Not applicable.

9 Further Comments
A real array of length \(2n \) is internally allocated.

10 Example
This example approximates the integral \(\int_{-1}^{3} 3x^2 \, dx \) using 65 Clenshaw–Curtis weights and a 65-point Chebyshev Gauss–Lobatto grid on \([-1, 3] \).

10.1 Program Text

/* nag_ode_bvp_ps_lin_quad_weights (d02uyc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 23, 2011. */
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#include <nagx02.h>

#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL exact(double x);
#ifdef __cplusplus
}
#endif

int main(void)
{
 /* Scalars */
 Integer exit_status = 0;
 Integer i, n;
 double a = -1.0, b = 3.0;
 double integ, scale, uerr;
 double teneps = 10.0 * nag_machine_precision;
 /* Arrays */
 double *f = 0, *w = 0, *x = 0;
 /* NAG types */
 Nag_Boolean reqerr = Nag_FALSE, reqwgt = Nag_FALSE;
 NagError fail;

 INIT_FAIL(fail);

 printf("nag_ode_bvp_ps_lin_quad_weights (d02uyc) "
 "Example Program Results\n\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif

 #ifdef _WIN32
 scanf_s("%"NAG_IFMT "%*[\n]", &n);
 #else
 scanf("%"NAG_IFMT "%*[\n]", &n);
 #endif
 if (!f || !w || !x)
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Set up solution grid:
 * nag_ode_bvp_ps_lin_cgl_grid (d02ucc).
 * Chebyshev Gauss-Lobatto grid generation.
 */
 nag_ode_bvp_ps_lin_cgl_grid(n, a, b, x, &fail);
 if (fail.code != NE_NOERROR) {
 printf("Error from nag_ode_bvp_ps_lin_cgl_grid (d02ucc).
 %s\n", fail.message);
 exit_status = 1;
 goto END;
 }

 /* Set up problem right hand sides for grid. */
 for (i = 0; i < n + 1; i++) f[i] = exact(x[i]);

 scale = 0.5 * (b - a);

 /* Solve on equally spaced grid:
 * nag_ode_bvp_ps_lin_quad_weights (d02uyc).
 * Clenshaw-Curtis quadrature weights for integration using computed
 * Chebyshev coefficients.
 */
 nag_ode_bvp_ps_lin_quad_weights(n, w, &fail);
 if (fail.code != NE_NOERROR) {
 printf("Error from nag_ode_bvp_ps_lin_quad_weights (d02uyc).
 %s\n", fail.message);
 exit_status = 1;
 goto END;
 }
}

Mark 25
/* Apply the weights, w, to the function values, f, and scale. */
integ = 0.0;
for (i = 0; i < n+1; i++) integ = integ + w[i]*f[i];
integ = scale*integ;

/* Print function values and weights if required. */
if (reqwgt) {
 printf("f(x) and integral weights\n\n");
 printf(" x f(x) w\n");
 for (i = 0; i < n + 1; i++) {
 printf("%10.4f %10.4f %10.4f\n", x[i], f[i], w[i]);
 }
 printf("\n");
}

/* Print approximation to integral. */
printf("Integral of f(x) from %6.1f to %6.1f = %13.5f\n", a, b, integ);
if (reqerr) {
 uerr = fabs(integ - 28.0);
 printf("Integral is within a multiple ");
 printf("%8"NAG_IFMT " ", 10 * ((Integer) (uerr/teneps) + 1));
 printf(" of machine precision.\n");
}
END:
NAG_FREE(f);
NAG_FREE(w);
NAG_FREE(x);
return exit_status;
}

static double NAG_CALL exact(double x)
{
 return 3.0 * pow(x, 2);
}

10.2 Program Data
nag_ode_bvp_ps_lin_quad_weights (d02uyc) Example Program Data
64 : n

10.3 Program Results
nag_ode_bvp_ps_lin_quad_weights (d02uyc) Example Program Results
Integral of f(x) from -1.0 to 3.0 = 28.00000