1 Purpose

nag_1d_quad_wt_cauchy_1 (d01sqc) calculates an approximation to the Hilbert transform of a function $g(x)$ over $[a, b]$:

$$I = \int_a^b \frac{g(x)}{x - c} \, dx$$

for user-specified values of a, b and c.

2 Specification

```c
#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_wt_cauchy_1 (double (*g)(double x, Nag_User *comm),
   double a, double b, double c, double epsabs, double epsrel,
   Integer max_num_subint, double *result, double *abserr,
   Nag_QuadProgress *qp, Nag_User *comm, NagError *fail)
```

3 Description

nag_1d_quad_wt_cauchy_1 (d01sqc) is based upon the QUADPACK routine QAWC (Piessens et al. (1983)) and integrates a function of the form $g(x)w(x)$, where the weight function

$$w(x) = \frac{1}{x - c}$$

is that of the Hilbert transform. (If $a < c < b$ the integral has to be interpreted in the sense of a Cauchy principal value.) It is an adaptive function which employs a 'global' acceptance criterion (as defined by Malcolm and Simpson (1976)). Special care is taken to ensure that c is never the end-point of a sub-interval (Piessens et al. (1976)). On each sub-interval (c_1, c_2) modified Clenshaw–Curtis integration of orders 12 and 24 is performed if $c_1 - d \leq c \leq c_2 + d$ where $d = (c_2 - c_1)/20$. Otherwise the Gauss 7-point and Kronrod 15-point rules are used. The local error estimation is described by Piessens et al. (1983).

4 References

5 Arguments

1: g – function, supplied by the user

 g must return the value of the function g at a given point.

 External Function
The specification of \(g \) is:

\[
\text{double } g \text{ (double } x, \text{ Nag_User *comm)}
\]

1: \(x \) – double \hspace{1cm} \text{Input} \\
\text{On entry: the point at which the function } g \text{ must be evaluated.}

2: \(\text{comm} \) – Nag_User * \\
\text{Pointer to a structure of type Nag_User with the following member:}
\begin{align*}
\text{p} & \text{ – Pointer} \\
\text{On entry/exit: the pointer } \text{comm}\rightarrow\text{p} \text{ should be cast to the required type, e.g.,}
\text{struct user *s = (struct user *)comm \rightarrow p, to obtain the original object’s address with appropriate type. (See the argument } \text{comm} \text{ below.)}
\end{align*}

2: \(a \) – double \hspace{1cm} \text{Input} \\
\text{On entry: the lower limit of integration, } a.

3: \(b \) – double \hspace{1cm} \text{Input} \\
\text{On entry: the upper limit of integration, } b. \text{ It is not necessary that } a < b.

4: \(c \) – double \hspace{1cm} \text{Input} \\
\text{On entry: the argument } c \text{ in the weight function.}
\text{Constraint: } c \neq a \text{ or } b.

5: \(\text{epsabs} \) – double \hspace{1cm} \text{Input} \\
\text{On entry: the absolute accuracy required. If } \text{epsabs} \text{ is negative, the absolute value is used. See Section 7.}

6: \(\text{epsrel} \) – double \hspace{1cm} \text{Input} \\
\text{On entry: the relative accuracy required. If } \text{epsrel} \text{ is negative, the absolute value is used. See Section 7.}

7: \(\text{max_num_subint} \) – Integer \hspace{1cm} \text{Input} \\
\text{On entry: the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger } \text{max_num_subint} \text{ should be.}
\text{Constraint: } \text{max_num_subint} \geq 1.

8: \(\text{result} \) – double * \hspace{1cm} \text{Output} \\
\text{On exit: the approximation to the integral } I.

9: \(\text{abserr} \) – double * \hspace{1cm} \text{Output} \\
\text{On exit: an estimate of the modulus of the absolute error, which should be an upper bound for } |I - \text{result}|.

10: \(\text{qp} \) – Nag_QuadProgress * \\
\text{Pointer to structure of type Nag_QuadProgress with the following members:}
num_subint – Integer

Output

On exit: the actual number of sub-intervals used.

fun_count – Integer

Output

On exit: the number of function evaluations performed by nag_1d_quad_wt_cauchy_1 (d01sqc).

sub_int_beg_pts – double *
sub_int_end_pts – double *
sub_int_result – double *
sub_int_error – double *

Output

On exit: these pointers are allocated memory internally with max_num_subint elements. If an error exit other than NE_INT_ARG_LT, NE_2_REAL_ARG_EQ or NE_ALLOC_FAIL occurs, these arrays will contain information which may be useful. For details, see Section 9.

Before a subsequent call to nag_1d_quad_wt_cauchy_1 (d01sqc) is made, or when the information contained in these arrays is no longer useful, you should free the storage allocated by these pointers using the NAG macro NAG_FREE.

11: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm→p, of type Pointer, allows you to communicate information to and from g(). An object of the required type should be declared, e.g., a structure, and its address assigned to the pointer comm→p by means of a cast to Pointer in the calling program, e.g., comm.p = (Pointer)&s. The type Pointer is void *.

12: fail – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_REAL_ARG_EQ

On entry, \(c = \langle \text{value} \rangle\) while \(a = \langle \text{value} \rangle\). These arguments must satisfy \(c \neq a\).

On entry, \(c = \langle \text{value} \rangle\) while \(b = \langle \text{value} \rangle\). These arguments must satisfy \(c \neq b\).

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, max_num_subint must not be less than 1: max_num_subint = \(\langle \text{value} \rangle\).

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval \(\langle \text{value}, \text{value} \rangle\). The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: max_num_subint = \(\langle \text{value} \rangle\).

The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. Another integrator, which is designed for handling the type of difficulty involved, must be used.
Alternatively, consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}, or increasing the value of \texttt{max_num_subint}.

\textsc{NE_QUAD_ROUNDOFF_TOL}

Round-off error prevents the requested tolerance from being achieved: \texttt{epsabs} = \langle value \rangle, \texttt{epsrel} = \langle value \rangle. The error may be underestimated. Consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}.

7 \quad \textbf{Accuracy}

\texttt{nag_1d_quad_wt_cauchy_1} (d01sqc) cannot guarantee, but in practice usually achieves, the following accuracy:

\[|I - \text{result}| \leq tol \]

where

\[tol = \max\{|\text{epsabs}|, |\text{epsrel}| \times |I|\} \]

and \texttt{epsabs} and \texttt{epsrel} are user-specified absolute and relative error tolerances. Moreover it returns the quantity \texttt{abserr} which, in normal circumstances, satisfies

\[|I - \text{result}| \leq \text{abserr} \leq tol. \]

8 \quad \textbf{Parallelism and Performance}

Not applicable.

9 \quad \textbf{Further Comments}

The time taken by \texttt{nag_1d_quad_wt_cauchy_1} (d01sqc) depends on the integrand and the accuracy required.

If the function fails with an error exit other than \texttt{NE_INT_ARG_LT}, \texttt{NE_2_REAL_ARG_EQ} or \texttt{NE_ALLOC_FAIL}, then you may wish to examine the contents of the structure \texttt{qp}. These contain the end-points of the sub-intervals used by \texttt{nag_1d_quad_wt_cauchy_1} (d01sqc) along with the integral contributions and error estimates over the sub-intervals.

Specifically, for \(i = 1, 2, \ldots, n \), let \(r_i \) denote the approximation to the value of the integral over the sub-interval \([a_i, b_i]\) in the partition of \([a, b]\) and \(e_i \) be the corresponding absolute error estimate.

Then, \(\int_{a}^{b} g(x)w(x)dx \simeq r_i \) and \texttt{result} = \(\sum_{i=1}^{n} r_i \).

The value of \(n \) is returned in \texttt{qp}--\texttt{num_subint}, and the values \(a_i, b_i, r_i \) and \(e_i \) are stored in the structure \texttt{qp} as

\[a_i = \texttt{qp}--\texttt{sub_int_beg_pts}[i-1], \]
\[b_i = \texttt{qp}--\texttt{sub_int_end_pts}[i-1], \]
\[r_i = \texttt{qp}--\texttt{sub_int_result}[i-1] \]
\[e_i = \texttt{qp}--\texttt{sub_int_error}[i-1]. \]

10 \quad \textbf{Example}

This example computes

\[\int_{-1}^{1} \frac{dx}{(x^2 + 0.01^2)(x - \frac{1}{2})}. \]
10.1 Program Text

/* nag_1d_quad_wt_cauchy_1 (d01sqc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group.
 * *
 * Mark 6 revised, 2000.
 * Mark 7 revised, 2001.
 * */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd01.h>

#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL g(double x, Nag_User *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{
static Integer use_comm[1] = {1};
Integer exit_status = 0;
double a, b, c;
double epsabs, abserr, epsrel, result;
Nag_QuadProgress qp;
Integer max_num_subint;
NagError fail;
Nag_User comm;

INIT_FAIL(fail);
printf("nag_1d_quad_wt_cauchy_1 (d01sqc) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.p = (Pointer)&use_comm;

epsabs = 0.0;
epsrel = 0.0001;
a = -1.0;
b = 1.0;
c = 0.5;
max_num_subint = 200;
/* nag_1d_quad_wt_cauchy_1 (d01sqc).
 * One-dimensional adaptive quadrature, weight function
 * 1/(x-c), Cauchy principal value, thread-safe
 */
printf("a - lower limit of integration = %10.4f\n", a);
printf("b - upper limit of integration = %10.4f\n", b);
printf("epsabs - absolute accuracy requested = %11.2e\n", epsabs);
printf("epsrel - relative accuracy requested = %11.2e\n", epsrel);
printf("c - parameter in the weight function = %11.2e\n", c);
if (fail.code != NE_NOERROR)
printf("Error from nag_1d_quad_wt_cauchy_1 (d01sqc) %s\n", fail.message);
if (fail.code != NE_INT_ARG_LT && fail.code != NE_2_REAL_ARG_EQ &&
fail.code != NE_ALLOC_FAIL && fail.code != NE_NO_LICENCE)
{
printf("result - approximation to the integral = %9.2f\n", result);
printf("abserr - estimate of the absolute error = %11.2e\n", abserr);
printf("qp.fun_count - number of function evaluations = %4"NAG_IFMT"\n",}
qp.fun_count);
 printf("qp.num_subint - number of subintervals used = %4"NAG_IFMT"
",
 qp.num_subint);
/* Free memory used by qp */
NAG_FREE(qp.sub_int_beg_pts);
NAG_FREE(qp.sub_int_end_pts);
NAG_FREE(qp.sub_int_result);
NAG_FREE(qp.sub_int_error);
}
else
{
 exit_status = 1;
 goto END;
}
END:
 return exit_status;
}

static double NAG_CALL g(double x, Nag_User *comm)
{
 double aa;
 Integer *use_comm = (Integer *)comm->p;
 if (use_comm[0])
 {
 printf("(User-supplied callback g, first invocation.)\n"");
 use_comm[0] = 0;
 }
 aa = 0.01;
 return 1.0/(x*x+aa*aa);
}

10.2 Program Data
None.

10.3 Program Results
nag_1d_quad_wt_cauchy_1 (d01svc) Example Program Results
(User-supplied callback g, first invocation.)
a - lower limit of integration = -1.0000
b - upper limit of integration = 1.0000
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04
c - parameter in the weight function = 5.00e-01
result - approximation to the integral = -628.46
abserr - estimate of the absolute error = 1.32e-02
qp.fun_count - number of function evaluations = 255
qp.num_subint - number of subintervals used = 8