NAG Library Function Document

nag_quad_1d_gen_vec_multi_dimreq (d01rcc)

1 Purpose

The dimension of the arrays that must be passed as actual arguments to nag_quad_1d_gen_vec_multi_rcomm (d01rac) are dependent upon a number of factors. nag_quad_1d_gen_vec_multi_dimreq (d01rcc) returns the correct size of these arrays enabling nag_quad_1d_gen_vec_multi_rcomm (d01rac) to be called successfully.

2 Specification

```c
#include <nag.h>
#include <nagd01.h>
void nag_quad_1d_gen_vec_multi_dimreq (Integer ni, Integer *lenxrq,
   Integer *ldfmrq, Integer *sdfmrq, Integer *licmin, Integer *licmax,
   Integer *licmax, const Integer iopts[],
   const double opts[], NagError *fail)
```

3 Description

nag_quad_1d_gen_vec_multi_dimreq (d01rcc) returns the minimum dimension of the arrays `x` (`lenxrq`), `fm` (`ldfmrq x sdfmrq`), `icom` (`licmin`) and `com` (`lcmin`) that must be passed to nag_quad_1d_gen_vec_multi_rcomm (d01rac) to enable the integration to commence given options currently set for the `ni` integrands. nag_quad_1d_gen_vec_multi_dimreq (d01rcc) also returns the upper bounds `licmax` and `lcmax` for the dimension of the arrays `icom` and `com`, that could possibly be required with the chosen options.

All the minimum values `lenxrq`, `ldfmrq`, `sdfmrq`, `licmin` and `lcmin`, and subsequently all the maximum values `licmax` and `lcmax` may be affected if different options are set, and hence nag_quad_1d_gen_vec_multi_dimreq (d01rcc) should be called after any options are set, and before the first call to nag_quad_1d_gen_vec_multi_rcomm (d01rac).

A segment is here defined as a (possibly maximal) subset of the domain of integration. During subdivision, a segment is bisected into two new segments.

4 References

None.

5 Arguments

1: `ni` – Integer

- **Input**
- On entry: `ni`, the number of integrals which will be approximated in the subsequent call to nag_quad_1d_gen_vec_multi_rcomm (d01rac).
- Constraint: `ni > 0`.

2: `lenxrq` – Integer *

- **Output**
- On exit: `lenxrq`, the minimum dimension of the array `x` that can be used in a subsequent call to nag_quad_1d_gen_vec_multi_rcomm (d01rac).
3: ldffmrq – Integer*

 Output

 On exit: ldffmrq, the minimum stride separating row elements of the matrix of values stored in
 the array fm that can be used in a subsequent call to nag_quad_1d_gen_vec_multi_rcomm (d01rac).

4: sdfmrq – Integer*

 Output

 On exit: sdfmrq, the minimum number of columns of the matrix of values stored in the array fm
 that can be used in a subsequent call to nag_quad_1d_gen_vec_multi_rcomm (d01rac).

 Note: the minimum dimension of the array fm is ldffmrq × sdfmrq.

5: licmin – Integer*

 Output

 On exit: licmin, the minimum dimension of the array icom that must be passed to
 nag_quad_1d_gen_vec_multi_rcomm (d01rac) to enable it to calculate a single approximation
 to all the ni integrals over the interval [a, b] with s pri initial segments.

6: licmax – Integer*

 Output

 On exit: licmax the dimension of the array icom that must be passed to
 nag_quad_1d_gen_vec_multi_rcomm (d01rac) to enable it to exhaust the adaptive process
 controlled by the currently set options for the ni integrals over the interval [a, b] with s pri initial
 segments.

7: lcmin – Integer*

 Output

 On exit: lcmin, the minimum dimension of the array com that must be passed to
 nag_quad_1d_gen_vec_multi_rcomm (d01rac) to enable it to calculate a single approximation
 to all the ni integrals over the interval [a, b] with s pri initial segments.

8: lcmax – Integer*

 Output

 On exit: lcmax, the dimension of the array com that must be passed to
 nag_quad_1d_gen_vec_multi_rcomm (d01rac) to enable it to exhaust the adaptive process
 controlled by the currently set options for the ni integrals over the interval [a, b] with s pri initial
 segments.

9: iopts[dim] – const Integer

 Communication Array

 Note: the dimension, dim, of this array is dictated by the requirements of associated functions that
 must have been previously called. This array MUST be the same array passed as argument iopts
 in the previous call to nag_quad_opt_set (d01zkc).

 On entry: the integer option array as returned by nag_quad_opt_set (d01zkc).

 Constraint: iopts must not be changed between calls to nag_quad_opt_set (d01zkc),
 nag_quad_opt_get (d01zlc), nag_quad_1d_gen_vec_multi_dimreq (d01rcc) and
 nag_quad_1d_gen_vec_multi_rcomm (d01rac).

10: opts[dim] – const double

 Communication Array

 Note: the dimension, dim, of this array is dictated by the requirements of associated functions that
 must have been previously called. This array MUST be the same array passed as argument opts
 in the previous call to nag_quad_opt_set (d01zkc).

 On entry: the real option array as returned by nag_quad_opt_set (d01zkc).

 Constraint: opts must not be changed between calls to nag_quad_opt_set (d01zkc),
 nag_quad_opt_get (d01zlc), nag_quad_1d_gen_vec_multi_dimreq (d01rcc) and
 nag_quad_1d_gen_vec_multi_rcomm (d01rac).

11: fail – NagError*

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
 Dynamic memory allocation failed.
 See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
 On entry, argument \(\text{value}\) had an illegal value.

NE_INT
 On entry, \(\text{ni} = \langle\text{value}\rangle\).
 Constraint: \(\text{ni} > 0\).

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the
 call is correct then please contact NAG for assistance.
 An unexpected error has been triggered by this function. Please contact NAG.
 See Section 3.6.6 in the Essential Introduction for further information.

NE_INVALID_OPTION
 One of the option arrays \(\text{iopts}\) or \(\text{opts}\) has become corrupted. Re-initialize the arrays using
 \nag_quad_opt_set (d01zkc).

NE_NO_LICENCE
 Your licence key may have expired or may not have been installed correctly.
 See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in \nag_quad_1d_gen_vec_multi_rcomm (d01rac) for examples of the usage of
\nag_quad_1d_gen_vec_multi_dimreq (d01rcc).