NAG Library Function Document
nag_imldwt (c09cdc)

1 Purpose
nag_imldwt (c09cdc) computes the inverse one-dimensional multi-level discrete wavelet transform (DWT). This function reconstructs data from (possibly filtered or otherwise manipulated) wavelet transform coefficients calculated by nag_mldwt (c09ccc) from an original set of data. The initialization function nag_wfilt (c09aac) must be called first to set up the DWT options.

2 Specification

```c
#include <nag.h>
#include <nagc09.h>
void nag_imldwt (Integer nwlinv, Integer lenc, const double c[], Integer n, double y[], const Integer icomm[], NagError *fail)
```

3 Description
nag_imldwt (c09cdc) performs the inverse operation of nag_mldwt (c09ccc). That is, given a set of wavelet coefficients, computed up to level n\textsubscript{fwd} by nag_mldwt (c09ccc) using a DWT as set up by the initialization function nag_wfilt (c09aac), on a real data array of length n\textsubscript{fwd}, nag_imldwt (c09cdc) will reconstruct the data array y\textsubscript{i}, for i = 1, 2, ..., n, from which the coefficients were derived. If the original input dataset is level 0, then it is possible to terminate reconstruction at a higher level by specifying fewer than the number of levels used in the call to nag_mldwt (c09ccc). This results in a partial reconstruction.

4 References
None.

5 Arguments

1: `nwlinv` – Integer

 Input

 On entry: the number of levels to be used in the inverse multi-level transform. The number of levels must be less than or equal to n\textsubscript{fwd}, which has the value of argument `nwfl` as used in the computation of the wavelet coefficients using nag_mldwt (c09ccc). The data will be reconstructed to level (\text{nwfl} – nwlinv), where level 0 is the original input dataset provided to nag_mldwt (c09ccc).

 Constraint: 1 ≤ nwlinv ≤ n\textsubscript{fwd}, where n\textsubscript{fwd} is the value used in a preceding call to nag_mldwt (c09ccc).

2: `lenc` – Integer

 Input

 On entry: the dimension of the array c.

 Constraint: lenc ≥ nc, where nc is the total number of coefficients that correspond to a transform with nwlinv levels and is unchanged from the preceding call to nag_mldwt (c09ccc).

3: `c[lenc]` – const double

 Input

 On entry: the coefficients of a multi-level wavelet transform of the dataset.
Let $q(i)$ be the number of coefficients (of each type) at level i, for $i = n_{fwd}, n_{fwd} - 1, \ldots, 1$. Then, setting $k_1 = q(n_{fwd})$ and $k_{j+1} = k_j + q(n_{fwd} - j + 1)$, for $j = 1, 2, \ldots, n_{fwd}$, the coefficients are stored in \mathbf{c} as follows:

- $\mathbf{c}[i-1]$, for $i = 1, 2, \ldots, k_1$ contains the level n_{fwd} approximation coefficients, $a_{n_{fwd}}$.
- $\mathbf{c}[i-1]$, for $i = k_1 + 1, \ldots, k_2$ contains the level n_{fwd} detail coefficients $d_{n_{fwd}}$.
- $\mathbf{c}[i-1]$, for $i = k_j + 1, \ldots, k_{j+1}$ contains the level n_{fwd}/C_0 detail coefficients, for $j = 2, 3, \ldots, n_{fwd}$.

The values $q(i)$, for $i = n_{fwd}, n_{fwd} - 1, \ldots, 1$, are contained in \mathbf{dwtlev} which is produced as output by a preceding call to nag_mldwt (c09ccc). See nag_mldwt (c09ccc) for details.

Parameters

4: n – Integer

Input

On entry: n, the length of the data array, \mathbf{y}, to be reconstructed. For a full reconstruction of nwl levels, where nwl is as supplied to nag_mldwt (c09ccc), this must be the same as argument n used in the call to nag_mldwt (c09ccc). For a partial reconstruction of $\mathbf{nwlinv} < nwl$, this must be equal to $\mathbf{dwtlev}[\mathbf{nwlinv} + 1]$, as returned from nag_mldwt (c09ccc).

5: $\mathbf{y}[n]$ – double

Output

On exit: the dataset reconstructed from the multi-level wavelet transform coefficients and the transformation options supplied to the initialization function nag_wfilt (c09aac).

6: $\mathbf{icomm}[100]$ – const Integer

Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension for the forward transform previously computed by nag_mldwt (c09ccc).

7: \mathbf{fail} – NagError*

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed. See Section 3.2.1.2 in the Essential Introduction for further information.

NE_ARRAY_DIM_LEN

On entry, lenc is set too small: $\text{lenc} = \langle\text{value}\rangle$.

Constraint: $\text{lenc} \geq \langle\text{value}\rangle$.

NE_BAD_PARAM

On entry, argument $\langle\text{value}\rangle$ had an illegal value.

NE_INITIALIZATION

Either the initialization function has not been called first or array \mathbf{icomm} has been corrupted.

Either the initialization function was called with $\mathbf{wtrans} = \text{Nag_Single_Level}$ or array \mathbf{icomm} has been corrupted.

On entry, n is inconsistent with the value passed to the initialization function: $n = \langle\text{value}\rangle$, n should be $\langle\text{value}\rangle$.

\[\text{c09cdc} \]
On entry, \(nwlinv = \langle value\rangle\).
Constraint: \(nwlinv \geq 1\).

On entry, \(nwlinv\) is larger than the number of levels computed by the preceding call to nag_mldwt (c09ccc): \(nwlinv = \langle value\rangle\), expected = \(\langle value\rangle\).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the convolution and downsampling and should thus be close to *machine precision*.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_mldwt (c09ccc).