NAG Library Function Document

nag_wfilt (c09aac)

1 Purpose

nag_wfilt (c09aac) returns the details of the chosen one-dimensional discrete wavelet filter. For a chosen mother wavelet, discrete wavelet transform type (single-level or multi-level DWT or MODWT) and end extension method, this function returns the maximum number of levels of resolution (appropriate to a multi-level transform), the filter length, and the number of approximation coefficients (equal to the number of detail coefficients) for a single-level DWT or MODWT or the total number of coefficients for a multi-level DWT or MODWT. This function must be called before any of the one-dimensional discrete transform functions in this chapter.

2 Specification

```c
#include <nag.h>
#include <nagc09.h>

void nag_wfilt (Nag_Wavelet wavnam, Nag_WaveletTransform wtrans,
               Nag_WaveletMode mode, Integer n, Integer *nwlmax, Integer *nf,
               Integer *nwc, Integer icomm[], NagError *fail)
```

3 Description

One-dimensional discrete wavelet transforms (DWT) or maximum overlap wavelet transforms (MODWT) are characterised by the mother wavelet, the end extension method and whether multiresolution analysis is to be performed. For the selected combination of choices for these three characteristics, and for a given length, \(n \), of the input data array, \(x \), nag_wfilt (c09aac) returns the dimension details for the transform determined by this combination. The dimension details are: \(l_{\text{max}} \), the maximum number of levels of resolution that that could be computed were a multi-level DWT/MODWT applied; \(n_f \), the filter length; \(n_c \) the number of approximation (or detail) coefficients for a single-level DWT/MODWT or the total number of coefficients generated by a multi-level DWT/MODWT over \(l_{\text{max}} \) levels. These values are also stored in the communication array icomm, as are the input choices, so that they may be conveniently communicated to the one-dimensional transform functions in this chapter.

4 References

None.

5 Arguments

1: wavnam – Nag_Wavelet

 Input

 On entry: the name of the mother wavelet. See the c09 Chapter Introduction for details.

 wavnam = Nag_Haar
 Haar wavelet.

 wavnam = Nag_Daubechiesn, where \(n = 2, 3, \ldots, 10 \)
 Daubechies wavelet with \(n \) vanishing moments (\(2n \) coefficients). For example, wavnam = Nag_Daubechies4 is the name for the Daubechies wavelet with 4 vanishing moments (8 coefficients).
wavnam = Nag_Biorthogonal\(x_y\), where \(x_y\) can be one of \(1_1, 1_3, 1_5, 2_2, 2_4, 2_6, 2_8, 3_1, 3_3, 3_5\) or \(3_7\) Biorthogonal wavelet of order \(x_y\). For example wavnam = Nag_Biorthogonal1_1 is the name for the Biorthogonal wavelet of order 1.1.

Constraint: wavnam = Nag_Haar, Nag_Daubechies2, Nag_Daubechies3, Nag_Daubechies4, Nag_Daubechies5, Nag_Daubechies6, Nag_Daubechies7, Nag_Daubechies8, Nag_Daubechies9, Nag_Daubechies10, Nag_Biorthogonal1_1, Nag_Biorthogonal1_3, Nag_Biorthogonal1_5, Nag_Biorthogonal2_2, Nag_Biorthogonal2_4, Nag_Biorthogonal2_6, Nag_Biorthogonal2_8, Nag_Biorthogonal3_1, Nag_Biorthogonal3_3, Nag_Biorthogonal3_5 or Nag_Biorthogonal3_7.

2: wtrans – Nag_WaveletTransform

On entry: the type of discrete wavelet transform that is to be applied.

wtrans = Nag_SingleLevel
Single-level decomposition or reconstruction by discrete wavelet transform.

wtrans = Nag_MultiLevel
Multiresolution, by a multi-level DWT or its inverse.

wtrans = Nag_MODWTSingle
Single-level decomposition or reconstruction by maximal overlap discrete wavelet transform.

wtrans = Nag_MODWTMulti
Multi-level resolution by a maximal overlap discrete wavelet transform or its inverse.

Constraint: wtrans = Nag_SingleLevel, Nag_MultiLevel, Nag_MODWTSingle or Nag_MODWTMulti.

3: mode – Nag_WaveletMode

On entry: the end extension method. Note that only periodic end extension is currently available for the MODWT.

mode = Nag_Periodic
Periodic end extension.

mode = Nag_HalfPointSymmetric
Half-point symmetric end extension.

mode = Nag_WholePointSymmetric
Whole-point symmetric end extension.

mode = Nag_ZeroPadded
Zero end extension.

Constraints:

mode = Nag_Periodic, Nag_HalfPointSymmetric, Nag_WholePointSymmetric or Nag_ZeroPadded for DWT;
mode = Nag_Periodic for MODWT.

4: n – Integer

On entry: the number of elements, \(n\), in the input data array, \(x\).

Constraint: \(n \geq 2\).

5: nwlmax – Integer*

On exit: the maximum number of levels of resolution, \(l_{\text{max}}\), that can be computed when a multi-level discrete wavelet transform is applied. It is such that \(2^{l_{\text{max}}} \leq n < 2^{l_{\text{max}} + 1}\), for \(l_{\text{max}}\) an integer.
6: \(\text{nf} \) – Integer *
Output
On exit: the filter length, \(n_f\), for the supplied mother wavelet. This is used to determine the number of coefficients to be generated by the chosen transform.

7: \(\text{nwc} \) – Integer *
Output
On exit: for a single-level transform (\(\text{wtrans} = \text{Nag_SingleLevel or Nag_MODWTSingle}\)), the number of approximation coefficients that would be generated for the given problem size, mother wavelet, extension method and type of transform; this is also the corresponding number of detail coefficients. For a multi-level transform (\(\text{wtrans} = \text{Nag_MultiLevel or Nag_MODWTMulti}\)) the total number of coefficients that would be generated over \(l_{\text{max}}\) levels and with \(\text{keepa} = \text{Nag_StoreAll for MODWT}\).

8: \(\text{icomm}[100] \) – Integer
Communication Array
On exit: contains details of the wavelet transform and the problem dimension which is to be communicated to the one-dimensional discrete transform functions in this chapter.

9: \(\text{fail} \) – NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\langle\text{value}\rangle\) had an illegal value.
On entry, \(\text{wtrans} = \text{Nag_MODWTSingle or Nag_MODWTMulti}\) and \(\text{mode} \neq \text{Nag_Periodic}\).
Constraint: \(\text{mode} = \text{Nag_Periodic when wtrans = Nag_MODWTSingle or Nag_MODWTMulti}\).

NE_INT
On entry, \(\text{n} = \langle\text{value}\rangle\).
Constraint: \(\text{n} \geq 2\).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 **Accuracy**
Not applicable.

8 **Parallelism and Performance**
Not applicable.
9 Further Comments

None.

10 Example

This example computes the one-dimensional multi-level resolution for 8 values by a discrete wavelet transform using the Haar wavelet with zero end extensions. The length of the wavelet filter, the number of levels of resolution, the number of approximation coefficients at each level and the total number of wavelet coefficients are printed.

10.1 Program Text

/* nag_wfilt (c09aac) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 9, 2009. */
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <nag.h>
#include <nagc09.h>
#include <nag_stdlib.h>

int main(void)
{
 /* Constants */
 Integer licomm = 100;
 /* Integer scalar and array declarations */
 Integer exit_status = 0;
 Integer i, n, nf, nnz, nwc, nwlmax, ny;
 Integer *dwtlev = 0, *icomm = 0;
 NagError fail;
 Nag_Wavelet wavnamenum;
 Nag_WaveletMode modenum;
 /* Double scalar and array declarations */
 double *c = 0, *x = 0, *y = 0;
 /* Character scalar and array declarations */
 char mode[24], wavnam[20];

 INIT_FAIL(fail);
 printf("nag_wfilt (c09aac) Example Program Results\n\n");
 fflush(stdout);

 /* Skip heading in data file*/
 #ifdef _WIN32
 scanf_s("%*[^\n] ");
 #else
 scanf("%[^\n] ");
 #endif
 /* Read n - length of input data sequence*/
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"%[^\n] ", &n);
 #else
 scanf("%"NAG_IFMT"%[^\n] ", &n);
 #endif
 if (!x = NAG_ALLOC(n, double)) ||
 !y = NAG_ALLOC(n, double)) ||
 !(icomm = NAG_ALLOC(licomm, Integer)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Other code */

 /* Other code */
/* Read Wavelet name (wavnam) and end mode (mode)*/
#ifdef _WIN32
 scanf_s("%19s%23s%*[\n"] , wavnam, _countof(wavnam), mode, _countof(mode));
#else
 scanf("%19s%23s%*[\n"] , wavnam, mode);
#endif

wavnamenum = (Nag_Wavelet) nag_enum_name_to_value(wavnam);
modenum = (Nag_WaveletMode) nag_enum_name_to_value(mode);
if (n >= 2)
{
 printf(" Parameters read from file ::
");
 printf(" Wavelet :%15s
", wavnam);
 printf(" End mode :%15s
", mode);
 printf(" N :%15"NAG_IFMT"

", n);
 /* Read data array and write it out*/
 printf("%s
", " Input Data X :");
 for (i = 0; i < n; i++)
 {
 #ifdef _WIN32
 scanf_s("%lf ", &x[i]);
 #else
 scanf("%lf ", &x[i]);
 #endif
 printf("%8.3f%s", x[i], (i+1)%8?":"\"");
 }
#endif

nag_wfilt(wavnamenum, Nag_MultiLevel, modenum, n, &nwlmax, &nf, &nwc, icomm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_wfilt (c09aac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
if (!(c = NAG_ALLOC(nwc, double)) ||
 !(dwtlev = NAG_ALLOC(nwlmax+1, Integer)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

printf(" Length of wavelet filter : %10"NAG_IFMT"
", nf);
printf(" Number of Levels : %10"NAG_IFMT"
", nwlmax);
printf(" Number of coefficients in each level : \n");
for (i = 0; i < nwlmax+1; i++)
printf("%8"NAG_IFMT"s", dwtlev[i], (i+1)%8?":":"n");
printf("\n");
printf("Total number of wavelet coefficients :%10"NAG_IFMT"\n", nwc);
nnz = 0;
for (i = 0; i < nwlmax+1; i++)
 nnz = nnz+dwtlev[i];
printf("\n");
printf("Wavelet coefficients C :\n");
for (i = 0; i < nnz; i++)
 printf("%8.3f"s", c[i], (i+1)%8?":":"n");
printf("\n");// Reconstruct original data*/
n = n;
/*
*nag_imldwt (c09cdc)
*one-dimensional inverse multi-level discrete wavelet transform
*(imldwt)
*/
nag_imldwt(nwmax, nwc, c, n, y, icomm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_imldwt (c09cdc).\n%s\n", fail.message);
 exit_status = 1;
goto END;
}
printf("\n");
printf("Reconstruction Y :\n");
for (i = 0; i < ny; i++)
 printf("%8.3f"s", y[i], (i+1)%8?":":"n");
END:
NAG_FREE(c);
NAG_FREE(dwtlev);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(icomm);
return exit_status;
}

10.2 Program Data
nag_wfilt (c09aac) Example Program Data
8 : n
Nag_Haar Nag_ZeroPadded : wavnam, mode
2.0
5.0
8.0
9.0
7.0
4.0
-1.0
1.0
: X(1:n)

10.3 Program Results
nag_wfilt (c09aac) Example Program Results

Parameters read from file ::
Wavelet : Nag_Haar
End mode : Nag_ZeroPadded
N : 8

Input Data X :
2.000 5.000 8.000 9.000 7.000 4.000 -1.000 1.000

Length of wavelet filter : 2
Number of Levels : 3
Number of coefficients in each level :
Total number of wavelet coefficients : 8

| Wavelet coefficients c : | 12.374 | 4.596 | -5.000 | 5.500 | -2.121 | -0.707 | 2.121 | -1.414 |
| Reconstruction Y : | 2.000 | 5.000 | 8.000 | 9.000 | 7.000 | 4.000 | -1.000 | 1.000 |