NAG Library Function Document

nag_fft_multiple_real (c06fpc)

1 Purpose

nag_fft_multiple_real (c06fpc) computes the discrete Fourier transforms of m sequences, each containing n real data values.

2 Specification

```c
#include <nag.h>
#include <nagc06.h>
void nag_fft_multiple_real (Integer m, Integer n, double x[],
const double trig[], NagError *fail)
```

3 Description

Given m sequences of n real data values x_j^p, for $j = 0, 1, \ldots, n-1$ and $p = 1, 2, \ldots, m$, this function simultaneously calculates the Fourier transforms of all the sequences defined by

$$ z_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j^p \exp(-2\pi i j k / n), \quad \text{for} \quad k = 0, 1, \ldots, n-1; p = 1, 2, \ldots, m. $$

(Note the scale factor $1/\sqrt{n}$ in this definition.)

The transformed values z_k^p are complex, but for each value of p the z_k^p form a Hermitian sequence (i.e., z_{n-k}^p is the complex conjugate of z_k^p), so they are completely determined by mn real numbers. The first call of nag_fft_multiple_real (c06fpc) must be preceded by a call to nag_fft_init_trig (c06gzc) to initialize the array trig with trigonometric coefficients according to the value of n.

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term

$$ z_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j^p \exp(+2\pi i j k / n). $$

To compute this form, this function should be followed by a call to nag_multiple_conjugate_hermitian (c06gqc) to form the complex conjugates of the z_k^p.

The function uses a variant of the fast Fourier transform algorithm (Brigham (1974)) known as the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is provided for the factors 2, 3, 4, 5 and 6.

4 References

5 Arguments

1: m – Integer

Input

On entry: the number of sequences to be transformed, m.

Constraint: $m \geq 1$.

Mark 25

Mark 25 c06fpc.1
2: \(n \) – Integer
Input

On entry: the number of real values in each sequence, \(n \).

Constraint: \(n \geq 1 \).

3: \(x[\text{m} \times \text{n}] \) – double
Input/Output

On entry: the \(m \) data sequences must be stored in \(x \) consecutively. If the data values of the \(p \)th sequence to be transformed are denoted by \(x^p_j \), for \(j = 0, 1, \ldots, n - 1 \), then the \(mn \) elements of the array \(x \) must contain the values

\[
x_0^1, x_1^2, \ldots, x_{n-1}^1, x_0^2, x_1^2, \ldots, x_{n-1}^1, x_0^m, x_1^m, \ldots, x_{n-1}^m.
\]

On exit: the \(m \) discrete Fourier transforms in Hermitian form, stored consecutively, overwriting the corresponding original sequences. If the \(n \) components of the discrete Fourier transform \(\tilde{z}_k^p \) are written as \(a_k^p + ib_k^p \), then for \(0 \leq k \leq n/2 \), \(a_k^p \) is in array element \(x[(p - 1) \times n + k] \) and for \(1 \leq k \leq (n-1)/2 \), \(b_k^p \) is in array element \(x[(p - 1) \times n + n - k] \).

4: \(\text{trig}[2 \times \text{n}] \) – const double
Input

On entry: trigonometric coefficients as returned by a call of \text{nag_fft_init_trig} (c06gzc). \text{nag_fft_multiple_real} (c06fpc) makes a simple check to ensure that \text{trig} has been initialized and that the initialization is compatible with the value of \(n \).

5: \(\text{fail} \) – \text{NagError} *
Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_C06_NOT_TRIG

Value of \(n \) and \text{trig} array are incompatible or \text{trig} array not initialized.

NE_INT_ARG_LT

On entry, \(m = \langle \text{value} \rangle \).
Constraint: \(m \geq 1 \).

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 1 \).

7 **Accuracy**

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 **Parallelism and Performance**

Not applicable.

9 **Further Comments**

The time taken is approximately proportional to \(nm \log(n) \), but also depends on the factors of \(n \). The function is fastest if the only prime factors of \(n \) are 2, 3 and 5, and is particularly slow if \(n \) is a large prime, or has large prime factors.
10 Example

This program reads in sequences of real data values and prints their discrete Fourier transforms (as computed by nag_fft_multiple_real (c06fpc)). The Fourier transforms are expanded into full complex form using nag_multiple_hermitian_to_complex (c06gsc) and printed. Inverse transforms are then calculated by calling nag_multiple_conjugate_hermitian (c06gqc) followed by nag_fft_multiple_hermitian (c06fqc) showing that the original sequences are restored.

10.1 Program Text

/* nag_fft_multiple_real (c06fpc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 1, 1990.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>

int main(void)
{
 Integer exit_status = 0, i, j, m, n;
 NagError fail;
 double *trig = 0, *u = 0, *v = 0, *x = 0;

 INIT_FAIL(fail);

 printf("nag_fft_multiple_real (c06fpc) Example Program Results\n");
 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[^\n]");
 #else
 scanf("%*[^\n]");
 #endif
 #ifdef _WIN32
 while (scanf_s("%NAG_IFMT%NAG_IFMT", &m, &n) != EOF)
 #else
 while (scanf("%NAG_IFMT%NAG_IFMT", &m, &n) != EOF)
 #endif
 {
 if (m >= 1 && n >= 1)
 {
 if (!(trig = NAG_ALLOC(2*n, double)) ||
 !(u = NAG_ALLOC(m*n, double)) ||
 !(v = NAG_ALLOC(m*n, double)) ||
 !(x = NAG_ALLOC(m*n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 }
 else
 {
 printf("Invalid m or n.\n");
 exit_status = 1;
 return exit_status;
 }

 printf("\n\nm = %2"NAG_IFMT" n = %2"NAG_IFMT"\n", m, n);
 /* Read in data and print out. */
 for (j = 0; j < m; ++j)
 for (i = 0; i < n; ++i)
 scanf_s("%lf", &x[j*n + i]);

END:

```
#else
    scanf("%lf", &x[j*n + i]);
#endif

printf("\nOriginal data values\n\n");
for (j = 0; j < m; ++j)
{
    printf("  ");
    for (i = 0; i < n; ++i)
        printf("%10.4f%s", x[j*n + i],
            (i%6 == 5 && i != n-1?"\n   ":""));
    printf("\n");
}

/* nag_fft_init_trig (c06gzc).
 * Initialization function for other c06 functions
*/
    nag_fft_init_trig(n, trig, &fail); /* Initialise trig array */
    if (fail.code != NE_NOERROR)
    {
        printf("Error from nag_fft_init_trig (c06gzc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }

    /* Calculate transforms */
    /* nag_fft_multiple_real (c06fpc).
     * Multiple one-dimensional real discrete Fourier transforms
    */
    nag_fft_multiple_real(m, n, x, trig, &fail);
    if (fail.code != NE_NOERROR)
    {
        printf("Error from nag_fft_multiple_real (c06fpc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }

    printf("\nDiscrete Fourier transforms in Hermitian format\n\n");
    for (j = 0; j < m; ++j)
    {
        printf("  ");
        for (i = 0; i < n; ++i)
            printf("%10.4f%s", x[j*n + i],
                (i%6 == 5 && i != n-1?"\n   ":""));
        printf("\n");
    }

    /* Calculate full complex form of Hermitian result */
    /* nag_multiple_hermitian_to_complex (c06gsc).
     * Convert Hermitian sequences to general complex sequences
    */
    nag_multiple_hermitian_to_complex(m, n, x, u, v, &fail);
    printf("\nFourier transforms in full complex form\n\n");
    for (j = 0; j < m; ++j)
    {
        printf("Real");
        for (i = 0; i < n; ++i)
            printf("%10.4f", u[j*n + i],
                (i%6 == 5 && i != n-1?"\n   ":""));
        printf("\nImag");
        for (i = 0; i < n; ++i)
            printf("%10.4f", v[j*n + i],
                (i%6 == 5 && i != n-1?"\n   ":""));
        printf("\n\n");
    }

    /* Calculate inverse transforms */
    /* Conjugate Hermitian sequences of transforms */
    /* nag_multiple_conjugate_hermitian (c06gqc).
     * Complex conjugate of multiple Hermitian sequences
    */
    nag_multiple_conjugate_hermitian(m, n, x, &fail);
    /* Transform to give inverse transforms */
    /* nag_fft_multiple_hermitian (c06fqc).
     * Multiple one-dimensional Hermitian discrete Fourier
     * transforms
    */
c06 – Fourier Transforms

c06fpc

* transforms
*/

nag_fft_multiple_hermitian(m, n, x, trig, &fail);

printf("\nOriginal data as restored by inverse transform\n\n");

for (j = 0; j < m; ++j)
{
    printf(" ");
    for (i = 0; i < n; ++i)
    {
        printf("%10.4f%s", x[j*n + i],
            (i%6 == 5 && i != n-1?"\n ":""));
        printf("\n");
    }
}

END:
NAG_FREE(trig);
NAG_FREE(u);
NAG_FREE(v);
NAG_FREE(x);

return exit_status;
}

10.2 Program Data

nag_fft_multiple_real (c06fpc) Example Program Data

```
m = 3 n = 6

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
```

10.3 Program Results

nag_fft_multiple_real (c06fpc) Example Program Results

```
m = 3 n = 6

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete Fourier transforms in Hermitian format

1.0737 -0.1041 0.1126 -0.1467 -0.3738 -0.0044
1.3961 -0.0365 0.0780 -0.1521 -0.0607 0.4666
1.1237 0.0914 0.3936 0.1530 0.3458 -0.0508

Fourier transforms in full complex form

Real 1.0737 -0.1041 0.1126 -0.1467 0.1126 -0.1041
Imag 0.0000 -0.0044 -0.3738 0.0000 0.3738 0.0044

Real 1.3961 -0.0365 0.0780 -0.1521 0.0780 -0.0365
Imag 0.0000 0.4666 -0.0607 0.0000 0.0607 -0.4666

Real 1.1237 0.0914 0.3936 0.1530 0.3936 0.0914
Imag 0.0000 -0.0508 0.3458 0.0000 -0.3458 0.0508

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
```