```/* nag_zsymm (f16ztc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 8, 2005.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Complex       alpha, beta;
Integer       exit_status, i, j, m, n, pda, pdb, pdc;

/* Arrays */
Complex       *a = 0, *b = 0, *c = 0;
char          nag_enum_arg[40];

/* Nag Types */
NagError      fail;
Nag_OrderType order;
Nag_SideType  side;
Nag_UploType  uplo;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]
#define C(I, J) c[(J-1)*pdc + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]
#define C(I, J) c[(I-1)*pdc + J - 1]
order = Nag_RowMajor;
#endif

exit_status = 0;
INIT_FAIL(fail);

printf("nag_zsymm (f16ztc) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n] ");

/* Read the problem dimensions */
scanf("%ld%ld%*[^\n] ",
&m, &n);

/* Read the  side parameter */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
side = (Nag_SideType) nag_enum_name_to_value(nag_enum_arg);
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
scanf(" ( %lf , %lf ) ( %lf , %lf )%*[^\n] ",
&alpha.re, &alpha.im, &beta.re, &beta.im);

if (side == Nag_LeftSide)
pda = m;
else
pda = n;
#ifdef NAG_COLUMN_MAJOR
pdb = m;
pdc = m;
#else
pdb = n;
pdc = n;
#endif

if (m > 0 && n > 0)
{
/* Allocate memory */
if (side == Nag_LeftSide)
{
if (!(a = NAG_ALLOC(m*m, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else
{
if (!(a = NAG_ALLOC(n*n, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
if (!(b = NAG_ALLOC(m*n, Complex)) ||
!(c = NAG_ALLOC(m*n, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else
{
printf("Invalid m or n\n");
exit_status = 1;
return exit_status;
}

/* Input matrix A */
if (uplo == Nag_Upper)
{
for (i = 1; i <= pda; ++i)
{
for (j = i; j <= pda; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n] ");
}
}
else
{
for (i = 1; i <= pda; ++i)
{
for (j = 1; j <= i; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n] ");
}
}
/* Input matrix B */
for (i = 1; i <= m; ++i)
{
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n] ");
}
/* Input matrix C */
for (i = 1; i <= m; ++i)
{
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im);
scanf("%*[^\n] ");
}

/* nag_zsymm (f16ztc).
* Complex symmetric matrix-matrix multiply.
*
*/
nag_zsymm(order, side, uplo, m, n, alpha, a, pda,
b, pdb, beta, c, pdc, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zsymm.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print result */
/* nag_gen_complx_mat_print (x04dac).
* Print Complex general matrix (easy-to-use)
*/
fflush(stdout);
nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, c, pdc, "Matrix Matrix Product",
0, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);

return exit_status;
}
```