```/* nag_1d_pade (e02rac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2001.
* Mark 7b revised, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagc02.h>
#include <nage02.h>

int main(void)
{
/* Scalars */
Integer  exit_status, i, l, m, ia, ib, ic;
NagError fail;

/* Arrays */
double   *aa = 0, *bb = 0, *cc = 0, *dd = 0;
Complex  *z = 0;

INIT_FAIL(fail);

exit_status = 0;

l = 4;
m = 4;
ia = l + 1;
ib = m + 1;
ic = ia + ib - 1;

/* Allocate memory */
if (!(aa = NAG_ALLOC(ia, double)) ||
!(bb = NAG_ALLOC(ib, double)) ||
!(cc = NAG_ALLOC(ic, double)) ||
!(dd = NAG_ALLOC(ia + ib, double)) ||
!(z = NAG_ALLOC(l+m, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}

/* Power series coefficients in cc */
cc[0] = 1.0;
for (i = 1; i <= 8; ++i)
cc[i] = cc[i-1] / (double) i;

printf("\n");

printf("The given series coefficients are\n");

for (i = 1; i <= ic; ++i)
{
printf("%13.4e", cc[i-1]);
printf(i%5 == 0 || i == ic?"\n":" ");
}

*/
nag_1d_pade(ia, ib, cc, aa, bb, &fail);
if (fail.code != NE_NOERROR)
{
exit_status = 1;
goto END;
}

printf("\n");
printf("Numerator coefficients\n");

for (i = 1; i <= ia; ++i)
{
printf("%13.4e", aa[i-1]);
printf(i%5 == 0 || i == ia?"\n":" ");
}

printf("\n");
printf("Denominator coefficients\n");

for (i = 1; i <= ib; ++i)
{
printf("%13.4e", bb[i-1]);
printf(i%5 == 0 || i == ib?"\n":" ");
}

/* Calculate zeros of the approximant using nag_zeros_real_poly (c02agc) */
/* First need to reverse order of coefficients */
for (i = 1; i <= ia; ++i)
dd[ia-i] = aa[i-1];

/* nag_zeros_real_poly (c02agc).
* Zeros of a polynomial with real coefficients
*/
nag_zeros_real_poly(l, dd, Nag_TRUE, z, &fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_zeros_real_poly (c02agc), 1st call.\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

printf("\n");
printf("Zeros of approximant are at\n");
printf("    Real part    Imag part\n");
for (i = 1; i <= l; ++i)
printf("%13.4e%13.4e\n", z[i-1].re, z[i-1].im);

/* Calculate poles of the approximant using nag_zeros_real_poly (c02agc) */
/* Reverse order of coefficients */
for (i = 1; i <= ib; ++i)
dd[ib-i] = bb[i-1];

/* nag_zeros_real_poly (c02agc), see above. */
nag_zeros_real_poly(m, dd, Nag_TRUE, z, &fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_zeros_real_poly (c02agc), 2nd call.\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

printf("\n");
printf("Poles of approximant are at\n");
printf("    Real part    Imag part\n");
for (i = 1; i <= m; ++i)
printf("%13.4e%13.4e\n", z[i-1].re, z[i-1].im);

END:
NAG_FREE(aa);
NAG_FREE(bb);
NAG_FREE(cc);
NAG_FREE(dd);
NAG_FREE(z);

return exit_status;
}
```