NAG Library Function Document
 nag_surviv_logrank (g12abc)

1 Purpose

nag_surviv_logrank (g12abc) calculates the rank statistics, which can include the logrank test, for comparing survival curves.

2 Specification

```
#include <nag.h>
#include <nagg12.h>
void nag_surviv_logrank (Integer n, const double t[], const Integer ic[],
    const Integer grp[], Integer ngrp, const Integer ifreq[],
    const double wt[], double *ts, Integer *df, double *p, double obsd[],
    double expt[], Integer *nd, Integer di[], Integer ni[], Integer ldn,
    NagError *fail)
```


3 Description

A survivor function, $S(t)$, is the probability of surviving to at least time t. Given a series of n failure or right-censored times from g groups nag_surviv_logrank (g12abc) calculates a rank statistic for testing the null hypothesis

$$
H_{0}: S_{1}(t)=S_{2}(t)=\cdots=S_{g}(t), t \leq \tau
$$

where τ is the largest observed time, against the alternative hypothesis
H_{1} : at least one of the $S_{i}(t)$ differ, for some $t \leq \tau$.
Let t_{i}, for $i=1,2, \ldots, n_{d}$, denote the list of distinct failure times across all g groups and w_{i} a series of n_{d} weights. Let $d_{i j}$ denote the number of failures at time t_{i} in group j and $n_{i j}$ denote the number of observations in the group j that are known to have not failed prior to time t_{i}, i.e., the size of the risk set for group j at time t_{i}. If a censored observation occurs at time t_{i} then that observation is treated as if the censoring had occurred slightly after t_{i} and therefore the observation is counted as being part of the risk set at time t_{i}. Finally let

$$
d_{i}=\sum_{j=1}^{g} d_{i j} \quad \text { and } \quad n_{i}=\sum_{j=1}^{g} n_{i j}
$$

The (weighted) number of observed failures in the j th group, O_{j}, is therefore given by

$$
O_{j}=\sum_{i=1}^{n_{d}} w_{i} d_{i j}
$$

and the (weighted) number of expected failures in the j th group, E_{j}, by

$$
E_{j}=\sum_{i=1}^{n_{d}} w_{i} \frac{n_{i j} d_{i}}{n_{i}}
$$

If x denotes the vector of differences $x=\left(O_{1}-E_{1}, O_{2}-E_{2}, \ldots, O_{g}-E_{g}\right)$ and

$$
V_{j k}=\sum_{i=1}^{n_{d}} w_{i}^{2}\left(\frac{d_{i}\left(n_{i}-d_{i}\right)\left(n_{i} n_{i k} I_{j k}-n_{i j} n_{i k}\right)}{n_{i}^{2}\left(n_{i}-1\right)}\right)
$$

where $I_{j k}=1$ if $j=k$ and 0 otherwise, then the rank statistic, T, is calculated as

$$
T=x V^{-} x^{T}
$$

where V^{-}denotes a generalized inverse of the matrix V. Under the null hypothesis, $T \sim \chi_{\nu}^{2}$ where the degrees of freedom, ν, is taken as the rank of the matrix V.

4 References

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical Sciences Wiley
Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley
Rostomily R C, Duong D, McCormick K, Bland M and Berger M S (1994) Multimodality management of recurrent adult malignant gliomas: results of a phase II multiagent chemotherapy study and analysis of cytoreductive surgery Neurosurgery 35378

5 Arguments

1: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the number of failure and censored times.
Constraint: $\mathbf{n} \geq 2$.

2: $\quad \mathbf{t}[\mathbf{n}]$ - const double
Input
On entry: the observed failure and censored times; these need not be ordered.
Constraint: $\mathbf{t}[i-1] \neq \mathbf{t}[j-1]$ for at least one $i \neq j$, for $i=1,2, \ldots, \mathbf{n}$ and $j=1,2, \ldots, \mathbf{n}$.
3: $\quad \mathbf{i c}[\mathbf{n}]$ - const Integer
Input
On entry: $\mathbf{i c}[i-1]$ contains the censoring code of the i th observation, for $i=1,2, \ldots, \mathbf{n}$.
$\mathbf{i c}[i-1]=0$
the i th observation is a failure time.
$\mathbf{i c}[i-1]=1$
the i th observation is right-censored.
Constraints:
$\mathbf{i c}[i-1]=0$ or 1 , for $i=1,2, \ldots, \mathbf{n}$;
$\mathbf{i c}[i-1]=0$ for at least one i.
4: $\boldsymbol{\operatorname { g r p }}[\mathbf{n}]$ - const Integer Input
On entry: grp $[i-1]$ contains a flag indicating which group the i th observation belongs in, for $i=1,2, \ldots, \mathbf{n}$.
Constraints:
$1 \leq \mathbf{g r p}[i-1] \leq \mathbf{n g r p}$, for $i=1,2, \ldots, \mathbf{n}$;
each group must have at least one observation.
5: ngrp - Integer Input
On entry: g, the number of groups.
Constraint: $2 \leq \mathbf{n g r p} \leq \mathbf{n}$.
6: ifreq $[\mathrm{dim}]$ - const Integer Input
Note: the dimension, dim, of the array ifreq must be at least \mathbf{n}, unless ifreq is NULL.

On entry: optionally, the frequency (number of observations) that each entry in \mathbf{t} corresponds to. If ifreq is NULL then each entry in \mathbf{t} is assumed to correspond to a single observation, i.e., a frequency of 1 is assumed.
Constraint: if ifreq is not NULL, ifreq $[i-1] \geq 0$, for $i=1,2, \ldots, \mathbf{n}$.
7: $\quad \mathbf{w t}[$ dim $]$ - const double
Input
Note: the dimension, dim, of the array wt must be at least ldn, unless wt is NULL.
On entry: optionally, the n_{d} weights, w_{i}, where n_{d} is the number of distinct failure times. If $\mathbf{w t}$ is NULL then $w_{i}=1$ for all i.
Constraint: if $\mathbf{w t}$ is not NULL, $\mathbf{w t}[i-1] \geq 0.0$, for $i=1,2, \ldots, n_{d}$.
8: \quad ts - double *
Output
On exit: T, the test statistic.

9: $\quad \mathbf{d f}$ - Integer *
Output
On exit: ν, the degrees of freedom.

10: $\quad \mathbf{p}-$ double * Output

On exit: $P(X \geq T)$, when $X \sim \chi_{\nu}^{2}$, i.e., the probability associated with ts.
11: obsd[ngrp] - double
Output
On exit: O_{i}, the observed number of failures in each group.
12: $\operatorname{expt}[$ ngrp $]$ - double
Output
On exit: E_{i}, the expected number of failures in each group.
13: nd - Integer *
Output
On exit: n_{d}, the number of distinct failure times.
14: $\quad \mathbf{d i}[$ ldn $]$ - Integer
Output
On exit: the first nd elements of di contain d_{i}, the number of failures, across all groups, at time t_{i}.
15: $\quad \mathbf{n i}[\mathbf{l d n}]$ - Integer
Output
On exit: the first nd elements of ni contain n_{i}, the size of the risk set, across all groups, at time t_{i}.
16: Idn - Integer
Input
On entry: the size of arrays di and ni. As $n_{d} \leq n$, if n_{d} is not known a priori then a value of \mathbf{n} can safely be used for ldn.

Constraint: ldn $\geq n_{d}$, the number of unique failure times.
17: fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_GROUP_OBSERV

On entry, group $\langle v a l u e\rangle$ has no observations.

NE_INT

On entry, ldn $=\langle$ value \rangle.
Constraint: ldn $\geq\langle$ value \rangle.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 2$.

NE_INT_2

On entry, ngrp $=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: $2 \leq \mathbf{n g r p} \leq \mathbf{n}$.

NE_INT_ARRAY

On entry, $\operatorname{grp}[\langle$ value $\rangle]=\langle$ value \rangle and ngrp $=\langle$ value \rangle.
Constraint: $1 \leq \boldsymbol{g r p}[i-1] \leq$ ngrp.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_INVALID_CENSOR_CODE

On entry, ic $[\langle$ value $\rangle]=\langle$ value \rangle.
Constraint: $\mathbf{i c}[i-1]=0$ or 1 .

NE_INVALID_FREQ

On entry, ifreq $[\langle$ value $\rangle]=\langle$ value \rangle.
Constraint: ifreq $[i-1] \geq 0$.

NE_NEG_WEIGHT

On entry, $\mathbf{w t}[\langle$ value $\rangle]=\langle$ value \rangle.
Constraint: $\mathbf{w t}[i-1] \geq 0.0$.

NE_OBSERVATIONS

On entry, all observations are censored.

NE_TIME_SERIES_IDEN

On entry, all the times in \mathbf{t} are the same.

NE_ZERO_DF

The degrees of freedom are zero.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_surviv_logrank (g12abc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_surviv_logrank (g12abc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The use of different weights in the formula given in Section 3 leads to different rank statistics being calculated. The logrank test has $w_{i}=1$, for all i, which is the equivalent of calling nag_surviv_logrank (g12abc) when wt is NULL. Other rank statistics include Wilcoxon ($w_{i}=n_{i}$), Tarone-Ware ($w_{i}=\sqrt{n_{i}}$) and Peto-Peto ($w_{i}=\tilde{S}\left(t_{i}\right)$ where $\tilde{S}\left(t_{i}\right)=\prod_{t_{j} \leq t_{i}} \frac{n_{j}-d_{j}+1}{n_{j}+1}$) amongst others.

Calculation of any test, other than the logrank test, will probably require nag_surviv_logrank (g12abc) to be called twice, once to calculate the values of n_{i} and d_{i} to facilitate in the computation of the required weights, and once to calculate the test statistic itself.

10 Example

This example compares the time to death for 51 adults with two different types of recurrent gliomas (brain tumour), astrocytoma and glioblastoma, using a logrank test. For further details on the data see Rostomily et al. (1994).

10.1 Program Text

```
/* nag_surviv_logrank (g12abc) Example Program.
*
* Copyright 2009, Numerical Algorithms Group.
*
* Mark 23, 2011.
*/
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <ctype.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg12.h>
int main(void)
{
    /* Integer scalar and array declarations */
    Integer i, n, ngrp, lfreq, df, nd, ldn, exit_status;
    Integer *ic = 0, *grp = 0, *ifreq = 0, *di = 0, *ni = 0;
    /* NAG structures */
    NagError fail;
    /* Double scalar and array declarations */
    double ts, p;
    double *t = 0, *obsd = 0, *expt = 0;
    /* Performing a logrank test, so no weights needed */
    double *wt = 0;
    exit_status = 0;
    /* Initialise the error structure */
```

INIT_FAIL(fail);

```
printf("nag_surviv_logrank (g12abc) Example Program Results\n");
/* Skip headings in data file */
scanf("%*[^\n] ");
/* Read in the problem size */
scanf("%ld %ld %ld%*[^\n] ", &n, &ngrp, &lfreq);
ldn = n;
/* Allocate memory to input and output arrays */
if (!(t = NAG_ALLOC(n, double)) ||
        !(ic = NAG_ALLOC(n, Integer)) ||
        !(grp = NAG_ALLOC(n, Integer)) ||
        !(obsd = NAG_ALLOC(ngrp, double)) ||
        !(expt = NAG_ALLOC(ngrp, double)) ||
        !(di = NAG_ALLOC(ldn, Integer)) ||
        !(ni = NAG_ALLOC(ldn, Integer)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
if (lfreq > 0) {
    lfreq = n;
    if (!(ifreq = NAG_ALLOC(lfreq, Integer))) {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
}
```

/* Read in the times, censored flag, group information and if supplied the
frequencies */
for (i=0; i<n; i++) \{
scanf("\%lfold\%ld", \&t[i], \&ic[i], \&grp[i]);
if (lfreq > O)
scanf("\%ld\%*[^\n] ", \&ifreq[i]);
\}
/* Calculate the logrank statistic using nag_surviv_logrank (g12abc) */
nag_surviv_logrank(n, t, ic, grp, ngrp, ifreq, wt, \&ts, \&df, \&p, obsd,
expt, \&nd, di, ni, ldn, \&fail);
if (fail.code != NE_NOERROR) \{
printf("Error from nag_surviv_logrank (g12abc).\n\%s ${ }^{n}$ ",
fail.message);
exit_status = 1;
goto END;
\}
/* Display the test information */
printf("\n");
printf(" Observed Expected\n");
for (i = 0; i < ngrp; i++)
printf(" \%-5s \%1ld \%8.2f \%8.2f $\backslash n ", ~ " G r o u p ", i+1, o b s d[i], ~ e x p t[i]) ; ~$
printf("\n");
printf(" No. Unique Failure Times = \%3ld ${ }^{n}$ ", nd);
printf("\n");
printf(" Test Statistic = $\quad=8.4 \mathrm{f} \backslash \mathrm{n} ", ~ t s)$;
printf(" Degrees of Freedom = \%3ld\n", df);
printf(" p-value $=\% 8.4 f \backslash n ", p)$;
END:
NAG_FREE(t);
NAG_FREE(ic);
NAG_FREE (ifreq);
NAG_FREE(wt);
NAG_FREE(grp);

```
    NAG_FREE(obsd);
    NAG_FREE(expt);
    NAG_FREE(di);
    NAG_FREE(ni);
    return exit_status;
```

\}

10.2 Program Data

10.3 Program Results

```
nag_surviv_logrank (g12abc) Example Program Results
    Observed Expected
    Group 1 14.00 22.48
    Group 2 28.00 19.52
    No. Unique Failure Times = 36
    Test Statistic = 7.4966
    Degrees of Freedom = 1
    p-value = 0.0062
```

