NAG Library Function Document nag_pde_parab_1d_coll (d03pdc)

1 Purpose

nag_pde_parab_1d_coll (d03pdc) integrates a system of linear or nonlinear parabolic partial differential equations (PDEs) in one space variable. The spatial discretization is performed using a Chebyshev C^{0} collocation method, and the method of lines is employed to reduce the PDEs to a system of ordinary differential equations (ODEs). The resulting system is solved using a backward differentiation formula method.

2 Specification

```
#include <nag.h>
#include <nagd03.h>
void nag_pde_parab_ld_coll (Integer npde, Integer m, double *ts, double tout,
    void (*pdedef)(Integer npde, double t, const double x[], Integer nptl,
        const double u[], const double ux[], double p[], double q[],
        double r[], Integer *ires, Nag_Comm *comm),
    void (*bndary)(Integer npde, double t, const double u[],
        const double ux[], Integer ibnd, double beta[], double gamma[],
        Integer *ires, Nag_Comm *comm),
    double u[], Integer nbkpts, const double xbkpts[], Integer npoly,
    Integer npts, double x[],
    void (*uinit)(Integer npde, Integer npts, const double x[], double u[],
        Nag_Comm *comm),
    double acc, double rsave[], Integer lrsave, Integer isave[],
    Integer lisave, Integer itask, Integer itrace, const char *outfile,
    Integer *ind, Nag_Comm *comm, Nag_DO3_Save *saved, NagError *fail)
```


3 Description

nag_pde_parab_1d_coll (d03pdc) integrates the system of parabolic equations:

$$
\begin{equation*}
\sum_{j=1}^{\text {npde }} P_{i, j} \frac{\partial U_{j}}{\partial t}+Q_{i}=x^{-m} \frac{\partial}{\partial x}\left(x^{m} R_{i}\right), \quad i=1,2, \ldots, \text { npde }, \quad a \leq x \leq b, t \geq t_{0} \tag{1}
\end{equation*}
$$

where $P_{i, j}, Q_{i}$ and R_{i} depend on x, t, U, U_{x} and the vector U is the set of solution values

$$
\begin{equation*}
U(x, t)=\left[U_{1}(x, t), \ldots, U_{\text {npde }}(x, t)\right]^{\mathrm{T}} \tag{2}
\end{equation*}
$$

and the vector U_{x} is its partial derivative with respect to x. Note that $P_{i, j}, Q_{i}$ and R_{i} must not depend on $\frac{\partial U}{\partial t}$.
The integration in time is from t_{0} to $t_{\text {out }}$, over the space interval $a \leq x \leq b$, where $a=x_{1}$ and $b=x_{\text {nbkpts }}$ are the leftmost and rightmost of a user-defined set of break-points $x_{1}, x_{2}, \ldots, x_{\text {nbkpts }}$. The coordinate system in space is defined by the value of $m ; m=0$ for Cartesian coordinates, $m=1$ for cylindrical polar coordinates and $m=2$ for spherical polar coordinates.
The system is defined by the functions $P_{i, j}, Q_{i}$ and R_{i} which must be specified in pdedef.
The initial values of the functions $U(x, t)$ must be given at $t=t_{0}$, and must be specified in uinit.
The functions R_{i}, for $i=1,2, \ldots$, npde, which may be thought of as fluxes, are also used in the definition of the boundary conditions for each equation. The boundary conditions must have the form

$$
\begin{equation*}
\beta_{i}(x, t) R_{i}\left(x, t, U, U_{x}\right)=\gamma_{i}\left(x, t, U, U_{x}\right), \quad i=1,2, \ldots, \text { npde } \tag{3}
\end{equation*}
$$

where $x=a$ or $x=b$.
The boundary conditions must be specified in bndary. Thus, the problem is subject to the following restrictions:
(i) $t_{0}<t_{\text {out }}$, so that integration is in the forward direction;
(ii) $P_{i, j}, Q_{i}$ and the flux R_{i} must not depend on any time derivatives;
(iii) the evaluation of the functions $P_{i, j}, Q_{i}$ and R_{i} is done at both the break-points and internally selected points for each element in turn, that is $P_{i, j}, Q_{i}$ and R_{i} are evaluated twice at each breakpoint. Any discontinuities in these functions must therefore be at one or more of the break-points $x_{1}, x_{2}, \ldots, x_{\mathbf{n b k p t s}} ;$
(iv) at least one of the functions $P_{i, j}$ must be nonzero so that there is a time derivative present in the problem;
(v) if $m>0$ and $x_{1}=0.0$, which is the left boundary point, then it must be ensured that the PDE solution is bounded at this point. This can be done by either specifying the solution at $x=0.0$ or by specifying a zero flux there, that is $\beta_{i}=1.0$ and $\gamma_{i}=0.0$. See also Section 9.
The parabolic equations are approximated by a system of ODEs in time for the values of U_{i} at the mesh points. This ODE system is obtained by approximating the PDE solution between each pair of breakpoints by a Chebyshev polynomial of degree npoly. The interval between each pair of break-points is treated by nag_pde_parab_1d_coll (d03pdc) as an element, and on this element, a polynomial and its space and time derivatives are made to satisfy the system of PDEs at npoly -1 spatial points, which are chosen internally by the code and the break-points. In the case of just one element, the break-points are the boundaries. The user-defined break-points and the internally selected points together define the mesh. The smallest value that npoly can take is one, in which case, the solution is approximated by piecewise linear polynomials between consecutive break-points and the method is similar to an ordinary finite element method.

In total there are $(\mathbf{n b k p t s}-1) \times$ npoly +1 mesh points in the spatial direction, and npde $\times(($ nbkpts -1$) \times$ npoly +1$)$ ODEs in the time direction; one ODE at each break-point for each PDE component and (npoly - 1) ODEs for each PDE component between each pair of break-points. The system is then integrated forwards in time using a backward differentiation formula method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software Systems (eds J C Mason and M G Cox) 59-72 Chapman and Hall
Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic systems of PDEs ACM Trans. Math. Software 17 178-206

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a channel by a suction at porous walls Fluid Dynamics Research 4

5 Arguments

1: \quad npde - Integer
Input
On entry: the number of PDEs in the system to be solved.
Constraint: npde ≥ 1.
2: \mathbf{m} - Integer Input
On entry: the coordinate system used:
$\mathbf{m}=0$
Indicates Cartesian coordinates.
$\mathbf{m}=1$
Indicates cylindrical polar coordinates.
$\mathbf{m}=2$
Indicates spherical polar coordinates.
Constraint: $\mathbf{m}=0,1$ or 2 .
ts - double *
On entry: the initial value of the independent variable t.
On exit: the value of t corresponding to the solution values in \mathbf{u}. Normally ts $=$ tout.
Constraint: ts $<$ tout.
4: \quad tout - double
Input
On entry: the final value of t to which the integration is to be carried out.
pdedef - function, supplied by the user
External Function
pdedef must compute the values of the functions $P_{i, j}, Q_{i}$ and R_{i} which define the system of PDEs. The functions may depend on x, t, U and U_{x} and must be evaluated at a set of points.

The specification of pdedef is:
void pdedef (Integer npde, double t, const double $x[]$, Integer nptl, const double u[], const double ux[], double p[], double q[], double r[], Integer *ires, Nag_Comm *comm)
npde - Integer
Input
On entry: the number of PDEs in the system.
2: $\quad \mathbf{t}$ - double
Input
On entry: the current value of the independent variable t.
3: $\quad \mathbf{x}[\mathbf{n p t l}]$ - const double
Input
On entry: contains a set of mesh points at which $P_{i, j}, Q_{i}$ and R_{i} are to be evaluated. $\mathbf{x}[0]$ and $\mathbf{x}[$ nptl -1$]$ contain successive user-supplied break-points and the elements of the array will satisfy $\mathbf{x}[0]<\mathbf{x}[1]<\cdots<\mathbf{x}[$ nptl -1$]$.
nptl - Integer
Input
On entry: the number of points at which evaluations are required (the value of npoly +1).

5: $\quad \mathbf{u}[\mathbf{n p d e} \times \mathbf{n p t l}]-$ const double
Input
On entry: $\mathbf{u}[$ npde $\times(j-1)+i-1]$ contains the value of the component $U_{i}(x, t)$ where $x=\mathbf{x}[j-1]$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, nptl.

6: ux[npde \times nptl $]$ - const double
Input
On entry: ux[npde $\times(j-1)+i-1]$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial x}$ where $x=\mathbf{x}[j-1]$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, nptl.

7: $\quad \mathbf{p}[$ npde \times npde \times nptl $]-$ double
Output
On exit: $\mathbf{p}[$ npde $\times \mathbf{n p d e} \times(k-1)+\mathbf{n p d e} \times(j-1)+(i-1)]$ must be set to the value of $P_{i, j}\left(x, t, U, U_{x}\right)$ where $x=\mathbf{x}[k-1]$, for $i=1,2, \ldots$, npde, $j=1,2, \ldots$, npde and $k=1,2, \ldots$, nptl.

8: $\quad \mathbf{q}[$ npde $\times \mathbf{n p t l}]$ - double
Output
On exit: $\mathbf{q}[$ npde $\times(j-1)+i-1]$ must be set to the value of $Q_{i}\left(x, t, U, U_{x}\right)$ where $x=\mathbf{x}[j-1]$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, nptl.
$\mathbf{r}[$ npde $\times \mathbf{n p t l}]$ - double
Output
On exit: r[npde $\times(j-1)+i-1]$ must be set to the value of $R_{i}\left(x, t, U, U_{x}\right)$ where $x=\mathbf{x}[j-1]$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, nptl.
ires - Integer *
Input/Output
On entry: set to -1 or 1 .
On exit: should usually remain unchanged. However, you may set ires to force the integration function to take certain actions as described below:
ires $=2$
Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to fail.code $=$ NE_USER_STOP.
ires $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires $=3$ when a physically meaningless input or output value has been generated. If you consecutively set ires $=3$, then nag_pde_parab_1d_coll (d03pdc) returns to the calling function with the error indicator set to fail.code $=$ NE_FAILED_DERIV.
comm - Nag_Comm *
Communication Structure
Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.
user - double *
iuser - Integer *
p - Pointer
The type Pointer will be void *. Before calling nag_pde_parab_1d_coll (d03pdc) you may allocate memory and initialize these pointers with various quantities for use by pdedef when called from nag_pde_parab_1d_coll (d03pdc) (see Section 3.2.1.1 in the Essential Introduction).
bndary - function, supplied by the user
External Function
bndary must compute the functions β_{i} and γ_{i} which define the boundary conditions as in equation (3).

```
The specification of bndary is:
void bndary (Integer npde, double t, const double u[],
    const double ux[], Integer ibnd, double beta[], double gamma[],
    Integer *ires, Nag_Comm *comm)
1: npde - Integer Input
    On entry: the number of PDEs in the system.
2: t - double Input
    On entry: the current value of the independent variable t.
3: u[npde] - const double}\quad\mathrm{ Input
    On entry: u}[i-1]\mathrm{ contains the value of the component }\mp@subsup{U}{i}{}(x,t)\mathrm{ at the boundary specified
    by ibnd, for }i=1,2,\ldots,\mathrm{ npde.
```

4: ux[npde] - const double
Input
On entry: $\mathbf{u x}[i-1]$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial x}$ at the boundary specified by ibnd, for $i=1,2, \ldots$, npde.

5: ibnd - Integer
Input
On entry: specifies which boundary conditions are to be evaluated.
ibnd $=0$
bndary must set up the coefficients of the left-hand boundary, $x=a$.
ibnd $\neq 0$
bndary must set up the coefficients of the right-hand boundary, $x=b$.
beta[npde] - double
Output
On exit: beta $[i-1]$ must be set to the value of $\beta_{i}(x, t)$ at the boundary specified by ibnd, for $i=1,2, \ldots$, npde.
gamma[npde] - double
On exit: gamma $[i-1]$ must be set to the value of $\gamma_{i}\left(x, t, U, U_{x}\right)$ at the boundary specified by ibnd, for $i=1,2, \ldots$, npde.
ires - Integer *
Input/Output
On entry: set to -1 or 1 .
On exit: should usually remain unchanged. However, you may set ires to force the integration function to take certain actions as described below:
ires $=2$
Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to fail.code $=$ NE_USER_STOP. $\boldsymbol{\operatorname { I r e s }}=3$

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires $=3$ when a physically meaningless input or output value has been generated. If you consecutively set ires $=3$, then nag_pde_parab_1d_coll (d03pdc) returns to the calling function with the error indicator set to fail.code $=$ NE_FAILED_DERIV.
comm - Nag_Comm *
Communication Structure
Pointer to structure of type Nag_Comm; the following members are relevant to bndary.
user - double *
iuser - Integer *
p - Pointer
The type Pointer will be void *. Before calling nag_pde_parab_1d_coll (d03pdc) you may allocate memory and initialize these pointers with various quantities for use by bndary when called from nag_pde_parab_1d_coll (d03pdc) (see Section 3.2.1.1 in the Essential Introduction).
u[npde \times npts] - double
On entry: if ind $=1$ the value of \mathbf{u} must be unchanged from the previous call.
On exit: $\mathbf{u}[$ npde $\times(j-1)+i-1]$ will contain the computed solution at $t=\mathbf{t s}$.

8: nbkpts - Integer
Input
On entry: the number of break-points in the interval $[a, b]$.
Constraint: nbkpts ≥ 2.
9: \quad xbkpts[nbkpts] - const double
Input
On entry: the values of the break-points in the space direction. xbkpts[0] must specify the lefthand boundary, a, and xbkpts[nbkpts - 1] must specify the right-hand boundary, b.
Constraint: $\mathbf{x b k p t s}[0]<$ xbkpts $[1]<\cdots<$ xbkpts[nbkpts -1$]$.
10: npoly - Integer Input
On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution between each pair of break-points.

Constraint: $1 \leq$ npoly ≤ 49.
11: \quad npts - Integer
Input
On entry: the number of mesh points in the interval $[a, b]$.
Constraint: $\mathbf{n p t s}=(\mathbf{n b k p t s}-1) \times$ npoly +1.
12: $\quad \mathbf{x}[\mathbf{n p t s}]$ - double
Output
On exit: the mesh points chosen by nag_pde_parab_1d_coll (d03pdc) in the spatial direction. The values of \mathbf{x} will satisfy $\mathbf{x}[0]<\mathbf{x}[1]<\cdots<\overline{\mathbf{x}}[\mathbf{n p t s}-1]$.

13: uinit - function, supplied by the user
External Function
uinit must compute the initial values of the PDE components $U_{i}\left(x_{j}, t_{0}\right)$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, npts.

The specification of uinit is:

```
void uinit (Integer npde, Integer npts, const double x[], double u[],
    Nag_Comm *comm)
```

npde - Integer Input
On entry: the number of PDEs in the system.
2: npts - Integer Input
On entry: the number of mesh points in the interval $[a, b]$.
3: $\mathbf{x}[\mathbf{n p t s}]$ - const double \quad Input On entry: $\mathbf{x}[j-1]$, contains the values of the j th mesh point, for $j=1,2, \ldots$, npts.

4: $\quad \mathbf{u}[$ npde $\times \mathbf{n p t s}]$ - double
Output
On exit: $\mathbf{u}[$ npde $\times(j-1)+i-1]$ must be set to the initial value $U_{i}\left(x_{j}, t_{0}\right)$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, npts.

5: \quad comm - Nag_Comm *
Communication Structure
Pointer to structure of type Nag_Comm; the following members are relevant to uinit.

```
user - double *
    iuser - Integer *
    p - Pointer
```

The type Pointer will be void *. Before calling nag_pde_parab_1d_coll (d03pdc) you may allocate memory and initialize these pointers with various quantities for use by uinit when called from nag_pde_parab_1d_coll (d03pdc) (see Section 3.2.1.1 in the Essential Introduction).
$14:$
acc - double
Input
On entry: a positive quantity for controlling the local error estimate in the time integration. If $E(i, j)$ is the estimated error for U_{i} at the j th mesh point, the error test is:

$$
|E(i, j)|=\mathbf{a c c} \times(1.0+\mid \mathbf{u}[\text { npde } \times(j-1)+i-1] \mid) .
$$

Constraint: acc >0.0.

15: rsave[Irsave] - double
Communication Array
If ind $=0$, rsave need not be set on entry.
If ind $=1$, rsave must be unchanged from the previous call to the function because it contains required information about the iteration.

16: Irsave - Integer Input
On entry: the dimension of the array rsave.
Constraint: Irsave $\geq 11 \times$ npde \times npts $+50+$ nwkres + lenode .
17: isave[lisave] - Integer
Communication Array
If ind $=0$, isave need not be set on entry.
If ind $=1$, isave must be unchanged from the previous call to the function because it contains required information about the iteration. In particular:
isave[0]
Contains the number of steps taken in time.
isave[1]
Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
isave[2]
Contains the number of Jacobian evaluations performed by the time integrator.
isave[3]
Contains the order of the last backward differentiation formula method used.
isave[4]
Contains the number of Newton iterations performed by the time integrator. Each iteration involves an ODE residual evaluation followed by a back-substitution using the $L U$ decomposition of the Jacobian matrix.

18: lisave - Integer
Input
On entry: the dimension of the array isave.
Constraint: lisave \geq npde \times npts +24 .
itask - Integer
Input
On entry: specifies the task to be performed by the ODE integrator.
$\boldsymbol{i t a s k}=1$
Normal computation of output values \mathbf{u} at $t=$ tout.
$\boldsymbol{i t a s k}=2$
One step and return.
itask $=3$
Stop at first internal integration point at or beyond $t=$ tout.
Constraint: itask $=1,2$ or 3.

20: \quad itrace - Integer
Input
On entry: the level of trace information required from nag_pde_parab_1d_coll (d03pdc) and the underlying ODE solver. itrace may take the value $-1,0,1,2$ or 3 .
itrace $=-1$
No output is generated.
itrace $=0$
Only warning messages from the PDE solver are printed.
itrace >0
Output from the underlying ODE solver is printed. This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.

If itrace <-1, then -1 is assumed and similarly if itrace >3, then 3 is assumed.
The advisory messages are given in greater detail as itrace increases.
outfile - const char *
Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the diagnostic output will be directed to standard output.
ind - Integer *
Input/Output
On entry: indicates whether this is a continuation call or a new integration.
ind $=0$
Starts or restarts the integration in time.
ind $=1$
Continues the integration after an earlier exit from the function. In this case, only the arguments tout and fail should be reset between calls to nag_pde_parab_1d_coll (d03pdc).

Constraint: ind $=0$ or 1 .
On exit: ind $=1$.
comm - Nag_Comm *
Communication Structure
The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).
saved - Nag_D03_Save *
Communication Structure
saved must remain unchanged following a previous call to a Chapter d03 function and prior to any subsequent call to a Chapter d03 function.
fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but a small change in acc is unlikely to result in a changed solution.
$\mathbf{a c c}=\langle$ value \rangle.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could be due to your setting ires $=3$ in pdedef or bndary.

NE_FAILED_START

acc was too small to start integration: acc $=\langle$ value \rangle.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.
Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as $\mathbf{t s}$: $\mathbf{t s}=\langle$ value \rangle.
Underlying ODE solver cannot make further progress from the point ts with the supplied value of acc. $\mathbf{t s}=\langle$ value \rangle, acc $=\langle$ value \rangle.

NE_INCOMPAT_PARAM

On entry, $\mathbf{m}=\langle$ value \rangle and $\mathbf{x b k p t s}[0]=\langle$ value \rangle.
Constraint: $\mathbf{m} \leq 0$ or xbkpts $[0] \geq 0.0$

NE_INT

ires set to an invalid value in call to pdedef or bndary.
On entry, ind $=\langle$ value \rangle.
Constraint: ind $=0$ or 1 .
On entry, itask $=\langle$ value \rangle.
Constraint: itask $=1,2$ or 3.
On entry, $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{m}=0,1$ or 2 .
On entry, nbkpts $=\langle$ value \rangle.
Constraint: nbkpts ≥ 2.
On entry, npde $=\langle$ value \rangle.
Constraint: npde ≥ 1.
On entry, npoly $=\langle$ value \rangle.
Constraint: $1 \leq$ npoly ≤ 49.
On entry, npoly $=\langle$ value \rangle.
Constraint: npoly ≤ 49.
On entry, npoly $=\langle$ value \rangle.
Constraint: npoly ≥ 1.

NE_INT_2

On entry, lisave is too small: lisave $=\langle$ value \rangle. Minimum possible dimension: \langle value \rangle.
On entry, Irsave is too small: Irsave $=\langle$ value \rangle. Minimum possible dimension: \langle value \rangle.

NE_INT_3

On entry, npts $=\langle$ value \rangle, nbkpts $=\langle$ value \rangle and npoly $=\langle$ value \rangle.
Constraint: $\mathbf{n p t s}=($ nbkpts -1$) \times$ npoly +1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_NOT_CLOSE_FILE
 Cannot close file \langle value \rangle.

NE_NOT_STRICTLY_INCREASING

On entry, break-points xbkpts are badly ordered: $I=\langle$ value \rangle, $\mathbf{x b k p t s}[I-1]=\langle$ value \rangle, $J=\langle$ value \rangle and xbkpts $[J-1]=\langle$ value \rangle.

NE_NOT_WRITE_FILE

Cannot open file \langle value \rangle for writing.

NE_REAL

On entry, acc $=\langle$ value \rangle.
Constraint: acc >0.0.

NE_REAL_2

On entry, tout $=\langle$ value \rangle and $\mathbf{t s}=\langle$ value \rangle.
Constraint: tout $>$ ts.
On entry, tout $-\mathbf{t s}$ is too small: tout $=\langle$ value \rangle and $\mathbf{t s}=\langle$ value \rangle.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires $=2$ has been set in pdedef or bndary. Integration is successful as far as $\mathbf{t s}: \mathbf{t s}=\langle$ value \rangle.

$7 \quad$ Accuracy

nag_pde_parab_1d_coll (d03pdc) controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on the degree of the polynomial approximation npoly, and on both the number of break-points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy argument, acc.

8 Parallelism and Performance

nag_pde_parab_1d_coll (d03pdc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_pde_parab_1d_coll (d03pdc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

nag_pde_parab_1d_coll (d03pdc) is designed to solve parabolic systems (possibly including elliptic equations) with second-order derivatives in space. The argument specification allows you to include equations with only first-order derivatives in the space direction but there is no guarantee that the method of integration will be satisfactory for such systems. The position and nature of the boundary conditions in particular are critical in defining a stable problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

The problem consists of a fourth-order PDE which can be written as a pair of second-order ellipticparabolic PDEs for $U_{1}(x, t)$ and $U_{2}(x, t)$,

$$
\begin{gather*}
0=\frac{\partial^{2} U_{1}}{\partial x^{2}}-U_{2} \tag{4}\\
\frac{\partial U_{2}}{\partial t}=\frac{\partial^{2} U_{2}}{\partial x^{2}}+U_{2} \frac{\partial U_{1}}{\partial x}-U_{1} \frac{\partial U_{2}}{\partial x} \tag{5}
\end{gather*}
$$

where $-1 \leq x \leq 1$ and $t \geq 0$. The boundary conditions are given by

$$
\begin{gathered}
\frac{\partial U_{1}}{\partial x}=0 \quad \text { and } \quad U_{1}=1 \quad \text { at } x=-1, \quad \text { and } \\
\frac{\partial U_{1}}{\partial x}=0 \quad \text { and } \quad U_{1}=-1 \quad \text { at } x=1
\end{gathered}
$$

The initial conditions at $t=0$ are given by

$$
U_{1}=-\sin \frac{\pi x}{2} \quad \text { and } \quad U_{2}=\frac{\pi^{2}}{4} \sin \frac{\pi x}{2}
$$

The absence of boundary conditions for $U_{2}(x, t)$ does not pose any difficulties provided that the derivative flux boundary conditions are assigned to the first PDE (4) which has the correct flux, $\frac{\partial U_{1}}{\partial x}$. The conditions on $U_{1}(x, t)$ at the boundaries are assigned to the second PDE by setting $\beta_{2}=0.0$ in equation (3) and placing the Dirichlet boundary conditions on $U_{1}(x, t)$ in the function γ_{2}.

10.1 Program Text

```
/* nag_pde_parab_1d_coll (d03pdc) Example Program.
    *
    * Copyright 2001 Numerical Algorithms Group.
    *
    * Mark 7, 2001.
    * Mark 7b revised, 2004.
    */
#include <stdio.h>
#include <math.h>
```

```
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL uinit(Integer, Integer, const double[], double[],
    Nag_Comm *);
static void NAG_CALL pdedef(Integer, double, const double[], Integer,
                                    const double[], const double[], double[], double[],
                                    double[], Integer *, Nag_Comm *);
static void NAG_CALL bndary(Integer, double, const double[], const double[],
                                    Integer, double[], double[], Integer *, Nag_Comm *);
#ifdef
```

\qquad

``` cplusplus
}
#endif
#define U(I, J) u[npde*((J) -1)+(I) -1]
#define UOUT(I, J, K) uout[npde*(intpts*((K) -1)+(J) -1)+(I) -1]
#define P(I, J, K) p[npde*(npde*((K) -I)+(J) -1)+(I) -1]
#define Q(I, J) q[npde*((J) -1)+(I) -1]
#define R(I, J) r[npde*((J) -1)+(I) -1]
#define UX(I, J) ux[npde*((J) -1)+(I) -1]
int main(void)
{
    const Integer nbkpts = 10, nelts = nbkpts-1, npde = 2, npoly = 3,
                        m = 0, itype = 1, npts = nelts*npoly+1, neqn = npde*npts,
                        intpts = 6, npl1 = npoly+1, lisave = neqn+24,
                mu = npde*(npoly+1)-1, lenode = (3*mu+1)*neqn,
                nwkres = 3*npll*npll+npll*(npde*npde+6*npde+nbkpts+1)
                            +13*npde+5, lrsave = 11*neqn+50+nwkres+lenode;
    static double ruser[3] = {-1.0, -1.0, -1.0};
    static double xout[6] = { -1., -.6, -.2, .2, .6, 1. };
    double acc, tout, ts;
    Integer exit_status = 0, i, ind, it, itask, itrace;
    double *rsave = 0, *u = 0, *uout = 0, *x = 0, *xbkpts = 0;
    Integer *isave = 0;
    NagError fail;
    Nag_Comm comm;
    Nag_D03_Save saved;
    INIT_FAIL(fail);
    printf("nag_pde_parab_ld_coll (d03pdc) Example Program Results\n\n");
    /* For communication with user-supplied functions: */
    comm.user = ruser;
    /* Allocate memory */
    if (!(rsave = NAG_ALLOC(lrsave, double)) ||
        !(u = NAG_ALLOC(npde*npts, double)) ||
        !(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
        !(x = NAG_ALLOC(npts, double)) ||
        !(xbkpts = NAG_ALLOC(nbkpts, double)) ||
        !(isave = NAG_ALLOC(lisave, Integer)))
        {
            printf("Allocation failure\n");
            exit_status = 1;
            goto END;
        }
    acc = 1e-4;
    itrace = 0;
```

```
/* Set the break-points */
for (i = 0; i < 10; ++i)
    xbkpts[i] = i*2.0/9.0- 1.0;
    }
ind = 0;
itask = 1;
ts = 0.0;
tout = 1e-5;
printf(" Polynomial degree =%4ld", npoly);
printf(" No. of elements = %4ld\n\n", nelts);
printf(" Accuracy requirement = %12.3e", acc);
printf(" Number of points = %5ld\n\n", npts);
printf(" t / x ");
for (i = 0; i < 6; ++i)
    {
        printf("%8.4f", xout[i]);
        printf((i+1)%6== 0 || i == 5?"\n":"");
    }
printf("\n");
/* Loop over output values of t */
for (it = 0; it < 5; ++it)
    {
        tout *= 10.0;
        /* nag_pde_parab_1d_coll (d03pdc).
        * General system of parabolic PDEs, method of lines,
            * Chebyshev C^O collocation, one space variable
            */
        nag_pde_parab_ld_coll(npde, m, &ts, tout, pdedef, bndary, u, nbkpts,
                                    xbkpts, npoly, npts, x, uinit, acc, rsave, lrsave,
                                    isave, lisave, itask, itrace, 0, &ind, &comm,
                                    &saved, &fail);
        if (fail.code != NE_NOERROR)
            {
                printf("Error from nag_pde_parab_1d_coll (d03pdc).\n%s\n",
                        fail.message);
            exit_status = 1;
            goto END;
        }
        /* Interpolate at required spatial points */
        /* nag_pde_interp_1d_coll (d03pyc).
            * PDEs, spatial interpolation with nag_pde_parab_1d_coll
            * (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc)
            */
        nag_pde_interp_1d_coll(npde, u, nbkpts, xbkpts, npoly, npts, xout,
                                    intpts,
                                    itype, uout, rsave, lrsave,
                                    &fail);
        if (fail.code != NE_NOERROR)
            {
                printf("Error from nag_pde_interp_1d_coll (d03pyc).\n%s\n",
                    fail.message);
            exit_status = 1;
            goto END;
            }
        printf("\n %6.4f u(1)", tout);
        for (i = 1; i <= 6; ++i)
            {
                printf("%8.4f", UOUT(1, i, 1));
```

```
                printf(i%6 == 0 || i == 6?"\n":"");
            }
        printf(" u(2)");
        for (i = 1; i <= 6; ++i)
            {
                printf("%8.4f", UOUT(2, i, 1));
                printf(i%6 == 0 || i == 6?"\n":"");
            }
    }
    /* Print integration statistics */
    printf("\n");
    printf(" Number of integration steps in time ");
    printf("%4ld\n", isave[0]);
    printf(" Number of residual evaluations of resulting ODE system ");
    printf("%4ld\n", isave[1]);
    printf(" Number of Jacobian evaluations ");
    printf("%4ld\n", isave[2]);
    printf(" Number of iterations of nonlinear solver ");
    printf("%4ld\n", isave[4]);
END:
    NAG_FREE(rsave);
    NAG_FREE(u);
    NAG_FREE(uout);
    NAG_FREE(x);
    NAG_FREE(xbkpts);
    NAG_FREE(isave);
    return exit_status;
}
static void NAG_CALL uinit(Integer npde, Integer npts, const double x[],
                                    double u[], Nag_Comm *comm)
{
    Integer i;
    double piby2;
    if (comm->user[0] == -1.0)
        {
            printf("(User-supplied callback uinit, first invocation.)\n");
            comm->user[0] = 0.0;
        }
    piby2 = 0.5*nag_pi;
    for (i = 1; i <= npts; ++i)
        {
            U(1, i) = -sin(piby2*x[i-1]);
            U(2, i) = -piby2 *piby2 *U(1, i);
        }
    return;
}
static void NAG_CALL pdedef(Integer npde, double t, const double x[],
                                    Integer nptl, const double u[], const double ux[],
                                    double p[], double q[], double r[], Integer *ires,
                                    Nag_Comm *comm)
{
    Integer i;
    if (comm->user[1] == -1.0)
        {
            printf("(User-supplied callback pdedef, first invocation.)\n");
            comm->user[1] = 0.0;
            }
    for (i = 1; i <= nptl; ++i)
```

```
        Q(1, i) = U(2, i);
        Q(2, i) = U(1, i)*UX(2, i) - UX(1, i)*U(2, i);
        R(1, i) = UX(1, i);
        R(2, i) = UX(2, i);
        P(1, 1, i) = 0.0;
        P(1, 2, i) = 0.0;
        P(2, 1, i) = 0.0;
        P(2, 2, i) = 1.0;
        }
    return;
}
static void NAG_CALL bndary(Integer npde, double t, const double u[],
                                    const double ux[], Integer ibnd, double beta[],
                                    double gamma[], Integer *ires, Nag_Comm *comm)
{
    if (comm->user[2] == -1.0)
            {
                printf("(User-supplied callback bndary, first invocation.)\n");
                comm->user[2] = 0.0;
            }
    if (ibnd == 0)
            {
            beta[0] = 1.0;
            gamma[0] = 0.0;
            beta[1] = 0.0;
            gamma[1] = u[0] - 1.0;
        }
    else
            {
                beta[0] = 1.0;
                gamma[0] = 0.0;
            beta[1] = 0.0;
            gamma[1] = u[0] + 1.0;
        }
    return;
}
```


10.2 Program Data

None.

10.3 Program Results

Polynomial degree =			3 No	No. of ele	ements $=$	9	
Accuracy requirement			= 1	1.000e-04	Number	of poin	ts
t /	x	-1.0000	-0.6000	-0.2000	0.2000	0.6000	1.0000
(User-supplied callback uinit, first invocation.)							
(User-supplied callback pdedef, first invocation.)							
(User-supplied callback bndary, first invocation.)							
0.0001	u(1)	1.0000	0.8090	0.3090	-0.3090	-0.8090	-1.0000
	$u(2)$	-2.4850	-1.9957	-0.7623	0.7623	1.9957	2.4850
0.0010	$u(1)$	1.0000	0.8085	-0.3088	-0.3088	-0.8085	-1.0000
	u(2)	-2.5583	-1.9913	-0.7606	0.7606	1.9913	2.5583
0.0100	u(1)	1.0000	0.8051	10.3068	-0.3068	-0.8051	-1.0000
	u(2)	-2.6962	-1.9481	-0.7439	0.7439	1.9481	2.6962
0.1000	u(1)	1.0000	0.7951	10.2985	-0.2985	-0.7951	-1.0000
	u(2)	-2.9022	-1.8339	-0.6338	0.6338	1.8339	2.9022
1.0000	u(1)	1.0000	0.7939	-0.2972	-0.2972	-0.7939	-1.0000
	u(2)	-2.9233	-1.8247	-0.6120	0.6120	1.8247	2.9233

| Number of integration steps in time | 50 |
| :--- | :--- | ---: |
| Number of residual evaluations of resulting ODE system | 407 |
| Number of Jacobian evaluations | 18 |
| Number of iterations of nonlinear solver | 122 |

Example Program
Solution, $U(1, x, t)$, of Elliptic-parabolic Pair using Chebyshev Collocation and BDF

Solution, $U(2, x, t)$, of Elliptic-parabolic Pair using Chebyshev Collocation and BDF

