nag_prob_durbin_watson (g01epc) (PDF version)
g01 Chapter Contents
g01 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_prob_durbin_watson (g01epc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_prob_durbin_watson (g01epc) calculates upper and lower bounds for the significance of a Durbin–Watson statistic.

2  Specification

#include <nag.h>
#include <nagg01.h>
void  nag_prob_durbin_watson (Integer n, Integer ip, double d, double *pdl, double *pdu, NagError *fail)

3  Description

Let r = r1,r2,,rnT  be the residuals from a linear regression of y on p independent variables, including the mean, where the y values y1,y2,,yn can be considered as a time series. The Durbin–Watson test (see Durbin and Watson (1950)Durbin and Watson (1951) and Durbin and Watson (1971)) can be used to test for serial correlation in the error term in the regression.
The Durbin–Watson test statistic is:
d=i=1 n-1 ri+1-ri 2 i=1nri2 ,
which can be written as
d=rTAr rTr ,
where the n by n matrix A is given by
A= 1 -1 0 : -1 2 -1 : 0 -1 2 : : 0 -1 : : : : : : : : -1 0 0 0 1
with the nonzero eigenvalues of the matrix A being λj=1-cosπj/n, for j=1,2,,n-1.
Durbin and Watson show that the exact distribution of d depends on the eigenvalues of a matrix HA, where H is the hat matrix of independent variables, i.e., the matrix such that the vector of fitted values, y^, can be written as y^=Hy. However, bounds on the distribution can be obtained, the lower bound being
dl=i=1 n-pλiui2 i=1 n-pui2
and the upper bound being
du=i= 1 n-pλi- 1+pui2 i= 1 n-pui2 ,
where ui are independent standard Normal variables.
Two algorithms are used to compute the lower tail (significance level) probabilities, pl and pu, associated with dl and du. If n60 the procedure due to Pan (1964) is used, see Farebrother (1980), otherwise Imhof's method (see Imhof (1961)) is used.
The bounds are for the usual test of positive correlation; if a test of negative correlation is required the value of d should be replaced by 4-d.

4  References

Durbin J and Watson G S (1950) Testing for serial correlation in least squares regression. I Biometrika 37 409–428
Durbin J and Watson G S (1951) Testing for serial correlation in least squares regression. II Biometrika 38 159–178
Durbin J and Watson G S (1971) Testing for serial correlation in least squares regression. III Biometrika 58 1–19
Farebrother R W (1980) Algorithm AS 153. Pan's procedure for the tail probabilities of the Durbin–Watson statistic Appl. Statist. 29 224–227
Imhof J P (1961) Computing the distribution of quadratic forms in Normal variables Biometrika 48 419–426
Newbold P (1988) Statistics for Business and Economics Prentice–Hall
Pan Jie–Jian (1964) Distributions of the noncircular serial correlation coefficients Shuxue Jinzhan 7 328–337

5  Arguments

1:     nIntegerInput
On entry: n, the number of observations used in calculating the Durbin–Watson statistic.
Constraint: n>ip.
2:     ipIntegerInput
On entry: p, the number of independent variables in the regression model, including the mean.
Constraint: ip1.
3:     ddoubleInput
On entry: d, the Durbin–Watson statistic.
Constraint: d0.0.
4:     pdldouble *Output
On exit: lower bound for the significance of the Durbin–Watson statistic, pl.
5:     pdudouble *Output
On exit: upper bound for the significance of the Durbin–Watson statistic, pu.
6:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, ip=value.
Constraint: ip1.
NE_INT_2
On entry, n=value and ip=value.
Constraint: n>ip.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_REAL
On entry, d=value.
Constraint: d0.0.

7  Accuracy

On successful exit at least 4 decimal places of accuracy are achieved.

8  Parallelism and Performance

Not applicable.

9  Further Comments

If the exact probabilities are required, then the first n-p eigenvalues of HA can be computed and nag_prob_lin_chi_sq (g01jdc) used to compute the required probabilities with c set to 0.0 and d to the Durbin–Watson statistic.

10  Example

The values of n, p and the Durbin–Watson statistic d are input and the bounds for the significance level calculated and printed.

10.1  Program Text

Program Text (g01epce.c)

10.2  Program Data

Program Data (g01epce.d)

10.3  Program Results

Program Results (g01epce.r)


nag_prob_durbin_watson (g01epc) (PDF version)
g01 Chapter Contents
g01 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014