nag_zgtcon (f07cuc) (PDF version)
f07 Chapter Contents
f07 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_zgtcon (f07cuc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_zgtcon (f07cuc) estimates the reciprocal condition number of a complex n  by n  tridiagonal matrix A , using the LU  factorization returned by nag_zgttrf (f07crc).

2  Specification

#include <nag.h>
#include <nagf07.h>
void  nag_zgtcon (Nag_NormType norm, Integer n, const Complex dl[], const Complex d[], const Complex du[], const Complex du2[], const Integer ipiv[], double anorm, double *rcond, NagError *fail)

3  Description

nag_zgtcon (f07cuc) should be preceded by a call to nag_zgttrf (f07crc), which uses Gaussian elimination with partial pivoting and row interchanges to factorize the matrix A  as
where P  is a permutation matrix, L  is unit lower triangular with at most one nonzero subdiagonal element in each column, and U  is an upper triangular band matrix, with two superdiagonals. nag_zgtcon (f07cuc) then utilizes the factorization to estimate either A-11  or A-1 , from which the estimate of the reciprocal of the condition number of A , 1/κA  is computed as either
1 / κ1 A = 1 / A1 A-11
1 / κ A = 1 / A A-1 .
1/κA  is returned, rather than κA , since when A  is singular κA  is infinite.
Note that κA=κ1AT .

4  References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5  Arguments

1:     normNag_NormTypeInput
On entry: specifies the norm to be used to estimate κA.
Estimate κ1A.
Estimate κA.
Constraint: norm=Nag_OneNorm or Nag_InfNorm.
2:     nIntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
3:     dl[dim]const ComplexInput
Note: the dimension, dim, of the array dl must be at least max1,n-1.
On entry: must contain the n-1 multipliers that define the matrix L of the LU factorization of A.
4:     d[dim]const ComplexInput
Note: the dimension, dim, of the array d must be at least max1,n.
On entry: must contain the n diagonal elements of the upper triangular matrix U from the LU factorization of A.
5:     du[dim]const ComplexInput
Note: the dimension, dim, of the array du must be at least max1,n-1.
On entry: must contain the n-1 elements of the first superdiagonal of U.
6:     du2[dim]const ComplexInput
Note: the dimension, dim, of the array du2 must be at least max1,n-2.
On entry: must contain the n-2 elements of the second superdiagonal of U.
7:     ipiv[dim]const IntegerInput
Note: the dimension, dim, of the array ipiv must be at least max1,n.
On entry: must contain the n pivot indices that define the permutation matrix P. At the ith step, row i of the matrix was interchanged with row ipiv[i-1], and ipiv[i-1] must always be either i or i+1, ipiv[i-1]=i indicating that a row interchange was not performed.
8:     anormdoubleInput
On entry: if norm=Nag_OneNorm, the 1-norm of the original matrix A.
If norm=Nag_InfNorm, the -norm of the original matrix A.
anorm may be computed as demonstrated in Section 10 for the 1-norm. The -norm may be similarly computed by swapping the dl and du arrays in the code for the 1-norm.
anorm must be computed either before calling nag_zgttrf (f07crc) or else from a copy of the original matrix A (see Section 10).
Constraint: anorm0.0.
9:     rconddouble *Output
On exit: contains an estimate of the reciprocal condition number.
10:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

Dynamic memory allocation failed.
On entry, argument value had an illegal value.
On entry, n=value.
Constraint: n0.
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
On entry, anorm=value.
Constraint: anorm0.0.

7  Accuracy

In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.

8  Parallelism and Performance

nag_zgtcon (f07cuc) is not threaded by NAG in any implementation.
nag_zgtcon (f07cuc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the Users' Note for your implementation for any additional implementation-specific information.

9  Further Comments

The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization. The total number of floating-point operations required to perform a solve is proportional to n .
The real analogue of this function is nag_dgtcon (f07cgc).

10  Example

This example estimates the condition number in the 1-norm of the tridiagonal matrix A  given by
A = -1.3+1.3i 2.0-1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 1.0-2.0i -1.3+1.3i 2.0+1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 1.0+1.0i -1.3+3.3i -1.0+1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 2.0-3.0i -0.3+4.3i 1.0-1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 1.0+1.0i -3.3+1.3i .

10.1  Program Text

Program Text (f07cuce.c)

10.2  Program Data

Program Data (f07cuce.d)

10.3  Program Results

Program Results (f07cuce.r)

nag_zgtcon (f07cuc) (PDF version)
f07 Chapter Contents
f07 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014