Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_lapack_ztprfs (f07uv)

## Purpose

nag_lapack_ztprfs (f07uv) returns error bounds for the solution of a complex triangular system of linear equations with multiple right-hand sides, AX = B$AX=B$, ATX = B${A}^{\mathrm{T}}X=B$ or AHX = B${A}^{\mathrm{H}}X=B$, using packed storage.

## Syntax

[ferr, berr, info] = f07uv(uplo, trans, diag, ap, b, x, 'n', n, 'nrhs_p', nrhs_p)
[ferr, berr, info] = nag_lapack_ztprfs(uplo, trans, diag, ap, b, x, 'n', n, 'nrhs_p', nrhs_p)

## Description

nag_lapack_ztprfs (f07uv) returns the backward errors and estimated bounds on the forward errors for the solution of a complex triangular system of linear equations with multiple right-hand sides AX = B$AX=B$, ATX = B${A}^{\mathrm{T}}X=B$ or AHX = B${A}^{\mathrm{H}}X=B$, using packed storage. The function handles each right-hand side vector (stored as a column of the matrix B$B$) independently, so we describe the function of nag_lapack_ztprfs (f07uv) in terms of a single right-hand side b$b$ and solution x$x$.
Given a computed solution x$x$, the function computes the component-wise backward error β$\beta$. This is the size of the smallest relative perturbation in each element of A$A$ and b$b$ such that x$x$ is the exact solution of a perturbed system
 (A + δA)x = b + δb |δaij| ≤ β|aij|   and   |δbi| ≤ β|bi| .
$(A+δA)x=b+δb |δaij|≤β|aij| and |δbi|≤β|bi| .$
Then the function estimates a bound for the component-wise forward error in the computed solution, defined by:
 max |xi − x̂i| / max |xi| i i
$maxi|xi-x^i|/maxi|xi|$
where $\stackrel{^}{x}$ is the true solution.
For details of the method, see the F07 Chapter Introduction.

## References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## Parameters

### Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies whether A$A$ is upper or lower triangular.
uplo = 'U'${\mathbf{uplo}}=\text{'U'}$
A$A$ is upper triangular.
uplo = 'L'${\mathbf{uplo}}=\text{'L'}$
A$A$ is lower triangular.
Constraint: uplo = 'U'${\mathbf{uplo}}=\text{'U'}$ or 'L'$\text{'L'}$.
2:     trans – string (length ≥ 1)
Indicates the form of the equations.
trans = 'N'${\mathbf{trans}}=\text{'N'}$
The equations are of the form AX = B$AX=B$.
trans = 'T'${\mathbf{trans}}=\text{'T'}$
The equations are of the form ATX = B${A}^{\mathrm{T}}X=B$.
trans = 'C'${\mathbf{trans}}=\text{'C'}$
The equations are of the form AHX = B${A}^{\mathrm{H}}X=B$.
Constraint: trans = 'N'${\mathbf{trans}}=\text{'N'}$, 'T'$\text{'T'}$ or 'C'$\text{'C'}$.
3:     diag – string (length ≥ 1)
Indicates whether A$A$ is a nonunit or unit triangular matrix.
diag = 'N'${\mathbf{diag}}=\text{'N'}$
A$A$ is a nonunit triangular matrix.
diag = 'U'${\mathbf{diag}}=\text{'U'}$
A$A$ is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 1$1$.
Constraint: diag = 'N'${\mathbf{diag}}=\text{'N'}$ or 'U'$\text{'U'}$.
4:     ap( : $:$) – complex array
Note: the dimension of the array ap must be at least max (1,n × (n + 1) / 2)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
The n$n$ by n$n$ triangular matrix A$A$, packed by columns.
More precisely,
• if uplo = 'U'${\mathbf{uplo}}=\text{'U'}$, the upper triangle of A$A$ must be stored with element Aij${A}_{ij}$ in ap(i + j(j1) / 2)${\mathbf{ap}}\left(i+j\left(j-1\right)/2\right)$ for ij$i\le j$;
• if uplo = 'L'${\mathbf{uplo}}=\text{'L'}$, the lower triangle of A$A$ must be stored with element Aij${A}_{ij}$ in ap(i + (2nj)(j1) / 2)${\mathbf{ap}}\left(i+\left(2n-j\right)\left(j-1\right)/2\right)$ for ij$i\ge j$.
If diag = 'U'${\mathbf{diag}}=\text{'U'}$, the diagonal elements of A$A$ are assumed to be 1$1$, and are not referenced; the same storage scheme is used whether diag = 'N'${\mathbf{diag}}=\text{'N'}$ or ‘U’.
5:     b(ldb, : $:$) – complex array
The first dimension of the array b must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array must be at least max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
The n$n$ by r$r$ right-hand side matrix B$B$.
6:     x(ldx, : $:$) – complex array
The first dimension of the array x must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array must be at least max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
The n$n$ by r$r$ solution matrix X$X$, as returned by nag_lapack_ztptrs (f07us).

### Optional Input Parameters

1:     n – int64int32nag_int scalar
Default: The first dimension of the arrays b, x.
n$n$, the order of the matrix A$A$.
Constraint: n0${\mathbf{n}}\ge 0$.
2:     nrhs_p – int64int32nag_int scalar
Default: The second dimension of the arrays b, x. (An error is raised if these dimensions are not equal.)
r$r$, the number of right-hand sides.
Constraint: nrhs0${\mathbf{nrhs}}\ge 0$.

### Input Parameters Omitted from the MATLAB Interface

ldb ldx work rwork

### Output Parameters

1:     ferr(nrhs_p) – double array
ferr(j)${\mathbf{ferr}}\left(\mathit{j}\right)$ contains an estimated error bound for the j$\mathit{j}$th solution vector, that is, the j$\mathit{j}$th column of X$X$, for j = 1,2,,r$\mathit{j}=1,2,\dots ,r$.
2:     berr(nrhs_p) – double array
berr(j)${\mathbf{berr}}\left(\mathit{j}\right)$ contains the component-wise backward error bound β$\beta$ for the j$\mathit{j}$th solution vector, that is, the j$\mathit{j}$th column of X$X$, for j = 1,2,,r$\mathit{j}=1,2,\dots ,r$.
3:     info – int64int32nag_int scalar
info = 0${\mathbf{info}}=0$ unless the function detects an error (see Section [Error Indicators and Warnings]).

## Error Indicators and Warnings

info = i${\mathbf{info}}=-i$
If info = i${\mathbf{info}}=-i$, parameter i$i$ had an illegal value on entry. The parameters are numbered as follows:
1: uplo, 2: trans, 3: diag, 4: n, 5: nrhs_p, 6: ap, 7: b, 8: ldb, 9: x, 10: ldx, 11: ferr, 12: berr, 13: work, 14: rwork, 15: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

## Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

A call to nag_lapack_ztprfs (f07uv), for each right-hand side, involves solving a number of systems of linear equations of the form Ax = b$Ax=b$ or AHx = b${A}^{\mathrm{H}}x=b$; the number is usually 5$5$ and never more than 11$11$. Each solution involves approximately 4n2$4{n}^{2}$ real floating point operations.
The real analogue of this function is nag_lapack_dtprfs (f07uh).

## Example

```function nag_lapack_ztprfs_example
uplo = 'L';
trans = 'N';
diag = 'N';
ap = [ 4.78 + 4.56i;
2 - 0.3i;
2.89 - 1.34i;
-1.89 + 1.15i;
-4.11 + 1.25i;
2.36 - 4.25i;
0.04 - 3.69i;
4.15 + 0.8i;
-0.02 + 0.46i;
0.33 - 0.26i];
b = [ -14.78 - 32.36i,  -18.02 + 28.46i;
2.98 - 2.14i,  14.22 + 15.42i;
-20.96 + 17.06i,  5.62 + 35.89i;
9.54 + 9.91i,  -16.46 - 1.73i];
x = [ -5 - 2i,  1 + 5i;
-3 - 1i,  -2 - 2i;
2 + 1i,  3 + 4i;
4 + 3i,  4 - 3i];
[ferr, berr, info] = nag_lapack_ztprfs(uplo, trans, diag, ap, b, x)
```
```

ferr =

1.0e-13 *

0.2971
0.3205

berr =

1.0e-16 *

0.6246
0.3465

info =

0

```
```function f07uv_example
uplo = 'L';
trans = 'N';
diag = 'N';
ap = [ 4.78 + 4.56i;
2 - 0.3i;
2.89 - 1.34i;
-1.89 + 1.15i;
-4.11 + 1.25i;
2.36 - 4.25i;
0.04 - 3.69i;
4.15 + 0.8i;
-0.02 + 0.46i;
0.33 - 0.26i];
b = [ -14.78 - 32.36i,  -18.02 + 28.46i;
2.98 - 2.14i,  14.22 + 15.42i;
-20.96 + 17.06i,  5.62 + 35.89i;
9.54 + 9.91i,  -16.46 - 1.73i];
x = [ -5 - 2i,  1 + 5i;
-3 - 1i,  -2 - 2i;
2 + 1i,  3 + 4i;
4 + 3i,  4 - 3i];
[ferr, berr, info] = f07uv(uplo, trans, diag, ap, b, x)
```
```

ferr =

1.0e-13 *

0.2971
0.3205

berr =

1.0e-16 *

0.6246
0.3465

info =

0

```