Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_lapack_zgttrs (f07cs)

## Purpose

nag_lapack_zgttrs (f07cs) computes the solution to a complex system of linear equations AX = B $AX=B$ or ATX = B ${A}^{\mathrm{T}}X=B$ or AHX = B ${A}^{\mathrm{H}}X=B$, where A $A$ is an n $n$ by n $n$ tridiagonal matrix and X $X$ and B $B$ are n $n$ by r $r$ matrices, using the LU $LU$ factorization returned by nag_lapack_zgttrf (f07cr).

## Syntax

[b, info] = f07cs(trans, dl, d, du, du2, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)
[b, info] = nag_lapack_zgttrs(trans, dl, d, du, du2, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)

## Description

nag_lapack_zgttrs (f07cs) should be preceded by a call to nag_lapack_zgttrf (f07cr), which uses Gaussian elimination with partial pivoting and row interchanges to factorize the matrix A $A$ as
 A = PLU , $A=PLU ,$
where P $P$ is a permutation matrix, L $L$ is unit lower triangular with at most one nonzero subdiagonal element in each column, and U $U$ is an upper triangular band matrix, with two superdiagonals. nag_lapack_zgttrs (f07cs) then utilizes the factorization to solve the required equations.

## References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## Parameters

### Compulsory Input Parameters

1:     trans – string (length ≥ 1)
Specifies the equations to be solved as follows:
trans = 'N'${\mathbf{trans}}=\text{'N'}$
Solve AX = B$AX=B$ for X$X$.
trans = 'T'${\mathbf{trans}}=\text{'T'}$
Solve ATX = B${A}^{\mathrm{T}}X=B$ for X$X$.
trans = 'C'${\mathbf{trans}}=\text{'C'}$
Solve AHX = B${A}^{\mathrm{H}}X=B$ for X$X$.
Constraint: trans = 'N'${\mathbf{trans}}=\text{'N'}$, 'T'$\text{'T'}$ or 'C'$\text{'C'}$.
2:     dl( : $:$) – complex array
Note: the dimension of the array dl must be at least max (1,n1)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-1\right)$.
Must contain the (n1)$\left(n-1\right)$ multipliers that define the matrix L$L$ of the LU$LU$ factorization of A$A$.
3:     d( : $:$) – complex array
Note: the dimension of the array d must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
Must contain the n$n$ diagonal elements of the upper triangular matrix U$U$ from the LU$LU$ factorization of A$A$.
4:     du( : $:$) – complex array
Note: the dimension of the array du must be at least max (1,n1)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-1\right)$.
Must contain the (n1)$\left(n-1\right)$ elements of the first superdiagonal of U$U$.
5:     du2( : $:$) – complex array
Note: the dimension of the array du2 must be at least max (1,n2)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-2\right)$.
Must contain the (n2)$\left(n-2\right)$ elements of the second superdiagonal of U$U$.
6:     ipiv( : $:$) – int64int32nag_int array
Note: the dimension of the array ipiv must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
Must contain the n$n$ pivot indices that define the permutation matrix P$P$. At the i$i$th step, row i$i$ of the matrix was interchanged with row ipiv(i)${\mathbf{ipiv}}\left(i\right)$, and ipiv(i)${\mathbf{ipiv}}\left(i\right)$ must always be either i$i$ or (i + 1)$\left(i+1\right)$, ipiv(i) = i${\mathbf{ipiv}}\left(i\right)=i$ indicating that a row interchange was not performed.
7:     b(ldb, : $:$) – complex array
The first dimension of the array b must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array must be at least max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
The n$n$ by r$r$ matrix of right-hand sides B$B$.

### Optional Input Parameters

1:     n – int64int32nag_int scalar
Default: The first dimension of the array b The dimension of the arrays d, ipiv.
n$n$, the order of the matrix A$A$.
Constraint: n0${\mathbf{n}}\ge 0$.
2:     nrhs_p – int64int32nag_int scalar
Default: The second dimension of the array b.
r$r$, the number of right-hand sides, i.e., the number of columns of the matrix B$B$.
Constraint: nrhs0${\mathbf{nrhs}}\ge 0$.

ldb

### Output Parameters

1:     b(ldb, : $:$) – complex array
The first dimension of the array b will be max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array will be max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
ldbmax (1,n)$\mathit{ldb}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
The n$n$ by r$r$ solution matrix X$X$.
2:     info – int64int32nag_int scalar
info = 0${\mathbf{info}}=0$ unless the function detects an error (see Section [Error Indicators and Warnings]).

## Error Indicators and Warnings

info = i${\mathbf{info}}=-i$
If info = i${\mathbf{info}}=-i$, parameter i$i$ had an illegal value on entry. The parameters are numbered as follows:
1: trans, 2: n, 3: nrhs_p, 4: dl, 5: d, 6: du, 7: du2, 8: ipiv, 9: b, 10: ldb, 11: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

## Accuracy

The computed solution for a single right-hand side, $\stackrel{^}{x}$, satisfies an equation of the form
 (A + E) x̂ = b , $(A+E) x^=b ,$
where
 ‖E‖1 = O(ε)‖A‖1 $‖E‖1 =O(ε)‖A‖1$
and ε $\epsilon$ is the machine precision. An approximate error bound for the computed solution is given by
 (‖x̂ − x‖1)/(‖x‖1) ≤ κ(A) (‖E‖1)/(‖A‖1) , $‖ x^-x ‖1 ‖ x ‖1 ≤ κ(A) ‖E‖1 ‖A‖1 ,$
where κ(A) = A11 A1 $\kappa \left(A\right)={‖{A}^{-1}‖}_{1}{‖A‖}_{1}$, the condition number of A $A$ with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
Following the use of this function nag_lapack_zgtcon (f07cu) can be used to estimate the condition number of A $A$ and nag_lapack_zgtrfs (f07cv) can be used to obtain approximate error bounds.

The total number of floating point operations required to solve the equations AX = B $AX=B$ or ATX = B ${A}^{\mathrm{T}}X=B$ or AHX = B ${A}^{\mathrm{H}}X=B$ is proportional to nr $nr$.
The real analogue of this function is nag_lapack_dgttrs (f07ce).

## Example

```function nag_lapack_zgttrs_example
trans = 'No transpose';
dl = [ -0.78 - 0.26i;
0.162 - 0.486i;
-0.04516923076923077 - 0.0009538461538460446i;
-0.3978553846153843 - 0.05620307692307711i];
d = [ 1 - 2i;
1 + 1i;
2 - 3i;
1 + 1i;
-1.339863692307691 + 0.2875264615384604i];
du = [ -1.3 + 1.3i;
-1.3 + 3.3i;
-0.3 + 4.3i;
-3.3 + 1.3i];
du2 = [ 2 + 1i;
-1 + 1i;
1 - 1i];
ipiv = [int64(2);3;4;5;5];
b = [ 2.4 - 5i,  2.7 + 6.9i;
3.4 + 18.2i,  -6.9 - 5.3i;
-14.7 + 9.7i,  -6 - 0.6i;
31.9 - 7.7i,  -3.9 + 9.3i;
-1 + 1.6i,  -3 + 12.2i];
[bOut, info] = nag_lapack_zgttrs(trans, dl, d, du, du2, ipiv, b)
```
```

bOut =

1.0000 + 1.0000i   2.0000 - 1.0000i
3.0000 - 1.0000i   1.0000 + 2.0000i
4.0000 + 5.0000i  -1.0000 + 1.0000i
-1.0000 - 2.0000i   2.0000 + 1.0000i
1.0000 - 1.0000i   2.0000 - 2.0000i

info =

0

```
```function f07cs_example
trans = 'No transpose';
dl = [ -0.78 - 0.26i;
0.162 - 0.486i;
-0.04516923076923077 - 0.0009538461538460446i;
-0.3978553846153843 - 0.05620307692307711i];
d = [ 1 - 2i;
1 + 1i;
2 - 3i;
1 + 1i;
-1.339863692307691 + 0.2875264615384604i];
du = [ -1.3 + 1.3i;
-1.3 + 3.3i;
-0.3 + 4.3i;
-3.3 + 1.3i];
du2 = [ 2 + 1i;
-1 + 1i;
1 - 1i];
ipiv = [int64(2);3;4;5;5];
b = [ 2.4 - 5i,  2.7 + 6.9i;
3.4 + 18.2i,  -6.9 - 5.3i;
-14.7 + 9.7i,  -6 - 0.6i;
31.9 - 7.7i,  -3.9 + 9.3i;
-1 + 1.6i,  -3 + 12.2i];
[bOut, info] = f07cs(trans, dl, d, du, du2, ipiv, b)
```
```

bOut =

1.0000 + 1.0000i   2.0000 - 1.0000i
3.0000 - 1.0000i   1.0000 + 2.0000i
4.0000 + 5.0000i  -1.0000 + 1.0000i
-1.0000 - 2.0000i   2.0000 + 1.0000i
1.0000 - 1.0000i   2.0000 - 2.0000i

info =

0

```

Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013