
NAG Library Routine Document

F01EJF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F01EJF computes the principal matrix logarithm, log Að Þ, of a real n by n matrix A, with no eigenvalues
on the closed negative real line.

2 Specification

SUBROUTINE F01EJF (N, A, LDA, IMNORM, IFAIL)

INTEGER N, LDA, IFAIL

REAL (KIND=nag_wp) A(LDA,*), IMNORM

3 Description

Any nonsingular matrix A has infinitely many logarithms. For a matrix with no eigenvalues on the closed
negative real line, the principal logarithm is the unique logarithm whose spectrum lies in the strip
z : �� < Im zð Þ < �f g.

log Að Þ is computed using the Schur–Parlett algorithm for the matrix logarithm described in Higham (2008)
and Davies and Higham (2003).

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA,�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix logarithm, log Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EJF is
called.

Constraint: LDA � max 1;Nð Þ.

F01 – Matrix Operations, Including Inversion F01EJF

Mark 24 F01EJF.1

4: IMNORM – REAL (KIND=nag_wp) Output

On exit: if A has complex eigenvalues, F01EJF will use complex arithmetic to compute log Að Þ.
The imaginary part is discarded at the end of the computation, because it will theoretically vanish.
IMNORM contains the 1-norm of the imaginary part, which should be used to check that the routine
has given a reliable answer.

If A has real eigenvalues, F01EJF uses real arithmetic and IMNORM ¼ 0.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A is singular so the logarithm cannot be computed.

IFAIL ¼ 2

A was found to have eigenvalues on the negative real line.
The principal logarithm is not defined in this case, F01FJF can be used to find a complex non-
principal logarithm.

IFAIL ¼ 3

The arithmetic precision is higher than that used for the Padé approximant computed matrix
logarithm.

IFAIL ¼ 4

An unexpected internal error occurred.
Please contact NAG.

IFAIL ¼ �1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3

On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �999

Allocation of memory failed.

The real allocatable memory required is approximately 3N2.

F01EJF NAG Library Manual

F01EJF.2 Mark 24

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the algorithm
reduces to evaluating the logarithm of the eigenvalues of A and then constructing log Að Þ using the Schur
vectors. This should give a very accurate result. In general, however, no error bounds are available for the
algorithm. See Section 9.4 of Higham (2008) for details and further discussion.

For discussion of the condition of the matrix logarithm see Section 11.2 of Higham (2008). In particular,
the condition number of the matrix logarithm at A, �log Að Þ, which is a measure of the sensitivity of the
computed logarithm to perturbations in the matrix A, satisfies

�log Að Þ �
� Að Þ

log Að Þk k,

where � Að Þ is the condition number of A. Further, the sensitivity of the computation of log Að Þ is worst
when A has an eigenvalue of very small modulus, or has a complex conjugate pair of eigenvalues lying
close to the negative real axis.

8 Further Comments

If A has real eigenvalues then up to 4n2 of real allocatable memory may be required. Otherwise up to 4n2

of complex allocatable memory may be required.

The cost of the algorithm is O n3
� �

floating point operations. The exact cost depends on the eigenvalue
distribution of A; see Algorithm 11.11 of Higham (2008).

If estimates of the condition number of the matrix logarithm are required then F01JAF should be used.

F01FJF can be used to find the principal logarithm of a complex matrix. It can also be used to return a
complex, non-principal logarithm if a real matrix has no principal logarithm due to the presence of
negative eigenvalues.

9 Example

This example finds the principal matrix logarithm of the matrix

A ¼

3 �3 1 1
2 1 �2 1
1 1 3 �1
2 0 2 0

0
BB@

1
CCA.

9.1 Program Text

Program f01ejfe

! F01EJF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..
Use nag_library, Only: f01ejf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: imnorm
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01EJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

F01 – Matrix Operations, Including Inversion F01EJF

Mark 24 F01EJF.3

Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Find log(A)
ifail = 0
Call f01ejf(n,a,lda,imnorm,ifail)

! Print solution
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’log(A)’,ifail)

! Print the norm of the imaginary part to check it is small
Write (nout,*)
Write (nout,Fmt=’(1X,A,F6.2)’) ’Imnorm =’, imnorm

End Program f01ejfe

9.2 Program Data

F01EJF Example Program Data

4 :Value of N

3.0 -3.0 1.0 1.0
2.0 1.0 -2.0 1.0
1.0 1.0 3.0 -1.0
2.0 0.0 2.0 0.0 :End of matrix A

9.3 Program Results

F01EJF Example Program Results

log(A)
1 2 3 4

1 1.1957 -1.2076 -0.5802 1.0872
2 0.8464 1.0133 -0.5985 -0.1641
3 0.4389 0.6701 1.8449 -1.2111
4 1.2792 0.6177 2.1448 -1.9743

Imnorm = 0.00

F01EJF NAG Library Manual

F01EJF.4 (last) Mark 24

	F01EJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	A
	LDA
	IMNORM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-1
	IFAIL=-3
	IFAIL=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

