
NAG Library Routine Document

F01EJF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F01EJF computes the principal matrix logarithm, log Að Þ, of a real n by n matrix A, with no eigenvalues
on the closed negative real line.

2 Specification

SUBROUTINE F01EJF (N, A, LDA, IMNORM, IFAIL)

INTEGER N, LDA, IFAIL

REAL (KIND=nag_wp) A(LDA,*), IMNORM

3 Description

Any nonsingular matrix A has infinitely many logarithms. For a matrix with no eigenvalues on the closed
negative real line, the principal logarithm is the unique logarithm whose spectrum lies in the strip
z : �� < Im zð Þ < �f g.

log Að Þ is computed using the Schur–Parlett algorithm for the matrix logarithm described in Higham (2008)
and Davies and Higham (2003).

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA,�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix logarithm, log Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EJF is
called.

Constraint: LDA � max 1;Nð Þ.
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4: IMNORM – REAL (KIND=nag_wp) Output

On exit: if A has complex eigenvalues, F01EJF will use complex arithmetic to compute log Að Þ.
The imaginary part is discarded at the end of the computation, because it will theoretically vanish.
IMNORM contains the 1-norm of the imaginary part, which should be used to check that the routine
has given a reliable answer.

If A has real eigenvalues, F01EJF uses real arithmetic and IMNORM ¼ 0.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A is singular so the logarithm cannot be computed.

IFAIL ¼ 2

A was found to have eigenvalues on the negative real line.
The principal logarithm is not defined in this case, F01FJF can be used to find a complex non-
principal logarithm.

IFAIL ¼ 3

The arithmetic precision is higher than that used for the Padé approximant computed matrix
logarithm.

IFAIL ¼ 4

An unexpected internal error occurred.
Please contact NAG.

IFAIL ¼ �1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3

On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �999

Allocation of memory failed.

The real allocatable memory required is approximately 3N2.
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7 Accuracy

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the algorithm
reduces to evaluating the logarithm of the eigenvalues of A and then constructing log Að Þ using the Schur
vectors. This should give a very accurate result. In general, however, no error bounds are available for the
algorithm. See Section 9.4 of Higham (2008) for details and further discussion.

For discussion of the condition of the matrix logarithm see Section 11.2 of Higham (2008). In particular,
the condition number of the matrix logarithm at A, �log Að Þ, which is a measure of the sensitivity of the
computed logarithm to perturbations in the matrix A, satisfies

�log Að Þ �
� Að Þ

log Að Þk k,

where � Að Þ is the condition number of A. Further, the sensitivity of the computation of log Að Þ is worst
when A has an eigenvalue of very small modulus, or has a complex conjugate pair of eigenvalues lying
close to the negative real axis.

8 Further Comments

If A has real eigenvalues then up to 4n2 of real allocatable memory may be required. Otherwise up to 4n2

of complex allocatable memory may be required.

The cost of the algorithm is O n3
� �

floating point operations. The exact cost depends on the eigenvalue
distribution of A; see Algorithm 11.11 of Higham (2008).

If estimates of the condition number of the matrix logarithm are required then F01JAF should be used.

F01FJF can be used to find the principal logarithm of a complex matrix. It can also be used to return a
complex, non-principal logarithm if a real matrix has no principal logarithm due to the presence of
negative eigenvalues.

9 Example

This example finds the principal matrix logarithm of the matrix

A ¼

3 �3 1 1
2 1 �2 1
1 1 3 �1
2 0 2 0

0
BB@

1
CCA.

9.1 Program Text

Program f01ejfe

! F01EJF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..
Use nag_library, Only: f01ejf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: imnorm
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01EJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Find log( A )
ifail = 0
Call f01ejf(n,a,lda,imnorm,ifail)

! Print solution
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’log(A)’,ifail)

! Print the norm of the imaginary part to check it is small
Write (nout,*)
Write (nout,Fmt=’(1X,A,F6.2)’) ’Imnorm =’, imnorm

End Program f01ejfe

9.2 Program Data

F01EJF Example Program Data

4 :Value of N

3.0 -3.0 1.0 1.0
2.0 1.0 -2.0 1.0
1.0 1.0 3.0 -1.0
2.0 0.0 2.0 0.0 :End of matrix A

9.3 Program Results

F01EJF Example Program Results

log(A)
1 2 3 4

1 1.1957 -1.2076 -0.5802 1.0872
2 0.8464 1.0133 -0.5985 -0.1641
3 0.4389 0.6701 1.8449 -1.2111
4 1.2792 0.6177 2.1448 -1.9743

Imnorm = 0.00
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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