NAG Library Function Document
 nag_fresnel_s_vector (s20aqc)

1 Purpose

nag_fresnel_s_vector (s20aqc) returns an array of values for the Fresnel integral $S(x)$.

2 Specification

```
#include <nag.h>
#include <nags.h>
void nag_fresnel_s_vector (Integer n, const double x[], double f[],
    NagError *fail)
```


3 Description

nag_fresnel_s_vector (s20aqc) evaluates an approximation to the Fresnel integral

$$
S\left(x_{i}\right)=\int_{0}^{x_{i}} \sin \left(\frac{\pi}{2} t^{2}\right) d t
$$

for an array of arguments x_{i}, for $i=1,2, \ldots, n$.
Note: $S(x)=-S(-x)$, so the approximation need only consider $x \geq 0.0$.
The function is based on three Chebyshev expansions:
For $0<x \leq 3$,

$$
S(x)=x^{3} \sum_{r=0} a_{r} T_{r}(t), \quad \text { with } t=2\left(\frac{x}{3}\right)^{4}-1
$$

For $x>3$,

$$
S(x)=\frac{1}{2}-\frac{f(x)}{x} \cos \left(\frac{\pi}{2} x^{2}\right)-\frac{g(x)}{x^{3}} \sin \left(\frac{\pi}{2} x^{2}\right)
$$

where $f(x)=\sum_{r=0} b_{r} T_{r}(t)$,
and $g(x)=\sum_{r=0} c_{r} T_{r}(t)$,
with $t=2\left(\frac{3}{x}\right)^{4}-1$.
For small $x, S(x) \simeq \frac{\pi}{6} x^{3}$. This approximation is used when x is sufficiently small for the result to be correct to machine precision. For very small x, this approximation would underflow; the result is then set exactly to zero.

For large $x, f(x) \simeq \frac{1}{\pi}$ and $g(x) \simeq \frac{1}{\pi^{2}}$. Therefore for moderately large x, when $\frac{1}{\pi^{2} x^{3}}$ is negligible compared with $\frac{1}{2}$, the second term in the approximation for $x>3$ may be dropped. For very large x, when $\frac{1}{\pi x}$ becomes negligible, $S(x) \simeq \frac{1}{2}$. However there will be considerable difficulties in calculating $\cos \left(\frac{\pi}{2} x^{2}\right)$ accurately before this final limiting value can be used. Since $\cos \left(\frac{\pi}{2} x^{2}\right)$ is periodic, its value is essentially determined by the fractional part of x^{2}. If $x^{2}=N+\theta$ where N is an integer and $0 \leq \theta<1$, then $\cos \left(\frac{\pi}{2} x^{2}\right)$ depends on θ and on N modulo 4. By exploiting this fact, it is possible to retain
significance in the calculation of $\cos \left(\frac{\pi}{2} x^{2}\right)$ either all the way to the very large x limit, or at least until the integer part of $\frac{x}{2}$ is equal to the maximum integer allowed on the machine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Arguments

1: \mathbf{n} - Integer Input
On entry: n, the number of points.
Constraint: $\mathbf{n} \geq 0$.
2: $\mathbf{x}[\mathbf{n}]$ - const double Input
On entry: the argument x_{i} of the function, for $i=1,2, \ldots, \mathbf{n}$.
3: $\mathbf{f}[\mathbf{n}]$ - double Output
On exit: $S\left(x_{i}\right)$, the function values.
4: \quad fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INT

On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

$7 \quad$ Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.
If δ is somewhat larger than the machine precision (i.e., if δ is due to data errors etc.), then ϵ and δ are approximately related by:

$$
\epsilon \simeq\left|\frac{x \sin \left(\frac{\pi}{2} x^{2}\right)}{S(x)}\right| \delta
$$

Figure 1 shows the behaviour of the error amplification factor $\left|\frac{x \sin \left(\frac{\pi}{2} x^{2}\right)}{S(x)}\right|$.

However if δ is of the same order as the machine precision, then rounding errors could make ϵ slightly larger than the above relation predicts.

For small $x, \epsilon \simeq 3 \delta$ and hence there is only moderate amplification of relative error. Of course for very small x where the correct result would underflow and exact zero is returned, relative error-control is lost.

For moderately large values of x,

$$
\epsilon \simeq\left|2 x \sin \left(\frac{\pi}{2} x^{2}\right)\right| \delta
$$

and the result will be subject to increasingly large amplification of errors. However the above relation breaks down for large values of x (i.e., when $\frac{1}{x^{2}}$ is of the order of the machine precision); in this region the relative error in the result is essentially bounded by $\frac{2}{\pi x}$.
Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

Figure 1

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of \mathbf{x} from a file, evaluates the function at each value of x_{i} and prints the results.

10.1 Program Text

```
/* nag_fresnel_s_vector (s20aqc) Example Program.
    *
    * Copyright 2011, Numerical Algorithms Group.
    *
    * Mark 23 2011.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
    Integer exit_status = 0;
    Integer i, n;
    double *f = 0, *x = 0;
    NagError fail;
    INIT_FAIL(fail);
    /* Skip heading in data file */
    scanf("%*[^\n]");
    printf("nag_fresnel_s_vector (s20aqc) Example Program Results\n");
    printf("\n");
    printf(" x f\n");
    printf("\n");
    scanf("%ld", &n);
    scanf("%*[^\n]");
    /* Allocate memory */
    if (!(x = NAG_ALLOC(n, double)) ||
        !(f=NAG_ALLOC(n, double)))
        {
            printf("Allocation failure\n");
            exit_status = -1;
            goto END;
        }
    for (i=0; i<n; i++)
        scanf("%lf", &x[i]);
    scanf("%*[^\n]");
    /* nag_fresnel_s_vector (s20aqc).
        * Fresnel Integral S(x)
        */
    nag_fresnel_s_vector(n, x, f, &fail);
    if (fail.code!=NE_NOERROR)
            {
                printf("Error from nag_fresnel_s_vector (s20aqc).\n%s\n",
                    fail.message);
            exit_status = 1;
            goto END;
        }
    for (i=0; i<n; i++)
        printf(" %11.3e %11.3e\n", x[i], f[i]);
    END:
    NAG_FREE(f);
    NAG_FREE(x);
    return exit_status;
}
```


10.2 Program Data

nag_fresnel_s_vector (s20aqc) Example Program Data
11
$0.00 .51 .02 .04 .05 .06 .0 \quad 8.0 \quad 10.0-1.01000 .0$

10.3 Program Results

```
nag_fresnel_s_vector (s20aqc) Example Program Results
            x
            f
-.000e+00
                0.000e+00
5.000e-01 6.473e-02
1.000e+00 4.383e-01
2.000e+00 3.434e-01
4.000e+00 4.205e-01
5.000e+00 4.992e-01
6.000e+00 4.470e-01
8.000e+00 4.602e-01
1.000e+01 4.682e-01
-1.000e+00 -4.383e-01
1.000e+03 4.997e-01
```

