
NAG Library Function Document

nag_step_regsn (g02eec)

1 Purpose

nag_step_regsn (g02eec) carries out one step of a forward selection procedure in order to enable the
‘best’ linear regression model to be found.

2 Specification

#include <nag.h>
#include <nagg02.h>

void nag_step_regsn (Nag_OrderType order, Integer *istep,
Nag_IncludeMean mean, Integer n, Integer m, const double x[],
Integer pdx, const char *var_names[], const Integer sx[], Integer maxip,
const double y[], const double wt[], double fin, Nag_Boolean *addvar,
const char *newvar[], double *chrss, double *f, const char *model[],
Integer *nterm, double *rss, Integer *idf, Integer *ifr,
const char *free_vars[], double exss[], double q[], Integer pdq,
double p[], NagError *fail)

3 Description

One method of selecting a linear regression model from a given set of independent variables is by
forward selection. The following procedure is used:

(i) Select the best fitting independent variable, i.e., the independent variable which gives the smallest
residual sum of squares. If the F -test for this variable is greater than a chosen critical value, Fc, then
include the variable in the model, else stop.

(ii) Find the independent variable that leads to the greatest reduction in the residual sum of squares
when added to the current model.

(iii) If the F -test for this variable is greater than a chosen critical value, Fc, then include the variable in
the model and go to (ii), otherwise stop.

At any step the variables not in the model are known as the free terms.

nag_step_regsn (g02eec) allows you to specify some independent variables that must be in the model,
these are known as forced variables.

The computational procedure involves the use of QR decompositions, the R and the Q matrices being
updated as each new variable is added to the model. In addition the matrix QTXfree, where Xfree is the
matrix of variables not included in the model, is updated.

nag_step_regsn (g02eec) computes one step of the forward selection procedure at a call. The results
produced at each step may be printed or used as inputs to nag_regsn_mult_linear_upd_model (g02ddc),
in order to compute the regression coefficients for the model fitted at that step. Repeated calls to
nag_step_regsn (g02eec) should be made until F < Fc is indicated.

4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

Weisberg S (1985) Applied Linear Regression Wiley

g02 – Correlation and Regression Analysis g02eec

Mark 24 g02eec.1

../G02/g02ddc.pdf

5 Arguments

Note: after the initial call to nag_step_regsn (g02eec) with istep ¼ 0 all arguments except fin must not
be changed by you between calls.

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: istep – Integer * Input/Output

On entry: indicates which step in the forward selection process is to be carried out.

istep ¼ 0
The process is initialized.

Constraint: istep � 0.

On exit: is incremented by 1.

3: mean – Nag_IncludeMean Input

On entry: indicates if a mean term is to be included.

mean ¼ Nag MeanInclude
A mean term, intercept, will be included in the model.

mean ¼ Nag MeanZero
The model will pass through the origin, zero-point.

Constraint: mean ¼ Nag MeanInclude or Nag MeanZero.

4: n – Integer Input

On entry: n, the number of observations.

Constraint: n � 2.

5: m – Integer Input

On entry: m, the total number of independent variables in the dataset.

Constraint: m � 1.

6: x½dim� – const double Input

Note: the dimension, dim, of the array x must be at least

max 1;pdx�mð Þ when order ¼ Nag ColMajor;
max 1;n� pdxð Þ when order ¼ Nag RowMajor.

Where X i; jð Þ appears in this document, it refers to the array element

x½ j� 1ð Þ � pdxþ i� 1� when order ¼ Nag ColMajor;
x½ i� 1ð Þ � pdxþ j� 1� when order ¼ Nag RowMajor.

On entry: X i; jð Þ must contain the ith observation for the jth independent variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

7: pdx – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array x.

g02eec NAG Library Manual

g02eec.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

Constraints:

if order ¼ Nag ColMajor, pdx � n;
if order ¼ Nag RowMajor, pdx � m.

8: var_names½m� – const char * Input

On entry: var names½i � 1� must contain the name of the independent variable in row i of x, for
i ¼ 1; 2; . . . ;m.

9: sx½m� – const Integer Input

On entry: indicates which independent variables could be considered for inclusion in the
regression.

sx½j� 1� � 2
The variable contained in the jth column of x is automatically included in the regression
model, for j ¼ 1; 2; . . . ;m.

sx½j� 1� ¼ 1
The variable contained in the jth column of x is considered for inclusion in the regression
model, for j ¼ 1; 2; . . . ;m.

sx½j� 1� ¼ 0
The variable in the jth column is not considered for inclusion in the model, for
j ¼ 1; 2; . . . ;m.

Constraint: sx½j � 1� � 0 and at least one value of sx½j � 1� ¼ 1, for j ¼ 1; 2; . . . ;m.

10: maxip – Integer Input

On entry: the maximum number of independent variables to be included in the model.

Constraints:

if mean ¼ Nag MeanInclude, maxip � 1þ number of values of sx > 0;
if mean ¼ Nag MeanZero, maxip � number of values of sx > 0.

11: y½n� – const double Input

On entry: the dependent variable.

12: wt½dim� – const double Input

Note: the dimension, dim, of the array wt must be at least n.

On entry: W , wt must contain the weights to be used in the weighted regression.

If wt½i� 1� ¼ 0:0, then the ith observation is not included in the model, in which case the
effective number of observations is the number of observations with nonzero weights.

If weights are not provided then wt must be set to the null pointer, i.e., (double *)0, and the
effective number of observations is n.

Constraint: if wt is not NULL, wt½i� � 0:0, for i ¼ 0; 1; . . . ;n� 1.

13: fin – double Input

On entry: the critical value of the F statistic for the term to be included in the model, Fc.

Suggested value: 2:0 is a commonly used value in exploratory modelling.

Constraint: fin � 0:0.

g02 – Correlation and Regression Analysis g02eec

Mark 24 g02eec.3

14: addvar – Nag_Boolean * Output

On exit: indicates if a variable has been added to the model.

addvar ¼ Nag TRUE
A variable has been added to the model.

addvar ¼ Nag FALSE
No variable had an F value greater than Fc and none were added to the model.

15: newvar½1� – const char * Output

On exit: if addvar ¼ Nag TRUE, newvar contains the name of the variable added to the model.

16: chrss – double * Output

On exit: if addvar ¼ Nag TRUE, chrss contains the change in the residual sum of squares due to
adding variable newvar.

17: f – double * Output

On exit: if addvar ¼ Nag TRUE, f contains the F statistic for the inclusion of the variable in
newvar.

18: model½maxip� – const char * Input/Output

On entry: if istep ¼ 0, model need not be set.

If istep 6¼ 0, model must contain the values returned by the previous call to nag_step_regsn
(g02eec).

On exit: the names of the variables in the current model.

19: nterm – Integer * Input/Output

On entry: if istep ¼ 0, nterm need not be set.

If istep 6¼ 0, nterm must contain the value returned by the previous call to nag_step_regsn
(g02eec).

On exit: the number of independent variables in the current model, not including the mean, if any.

20: rss – double * Input/Output

On entry: if istep ¼ 0, rss need not be set.

If istep 6¼ 0, rss must contain the value returned by the previous call to nag_step_regsn (g02eec).

On exit: the residual sums of squares for the current model.

21: idf – Integer * Input/Output

On entry: if istep ¼ 0, idf need not be set.

If istep 6¼ 0, idf must contain the value returned by the previous call to nag_step_regsn (g02eec).

On exit: the degrees of freedom for the residual sum of squares for the current model.

22: ifr – Integer * Input/Output

On entry: if istep ¼ 0, ifr need not be set.

If istep 6¼ 0, ifr must contain the value returned by the previous call to nag_step_regsn (g02eec).

On exit: the number of free independent variables, i.e., the number of variables not in the model
that are still being considered for selection.

g02eec NAG Library Manual

g02eec.4 Mark 24

23: free_vars½maxip� – const char * Input/Output

On entry: if istep ¼ 0, free_vars need not be set.

If istep 6¼ 0, free_vars must contain the values returned by the previous call to nag_step_regsn
(g02eec).

On exit: the first ifr values of free_vars contain the names of the free variables.

24: exss½maxip� – double Output

On exit: the first ifr values of exss contain what would be the change in regression sum of squares
if the free variables had been added to the model, i.e., the extra sum of squares for the free
variables. exss½i� 1� contains what would be the change in regression sum of squares if the
variable free vars½i� 1� had been added to the model.

25: q½dim� – double Input/Output

Note: the dimension, dim, of the array q must be at least

max 1;pdq�maxipþ 2ð Þ when order ¼ Nag ColMajor;
max 1;n� pdqð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix Q is stored in

q½ j� 1ð Þ � pdqþ i� 1� when order ¼ Nag ColMajor;
q½ i� 1ð Þ � pdqþ j� 1� when order ¼ Nag RowMajor.

On entry: if istep ¼ 0, q need not be set.

If istep 6¼ 0, q must contain the values returned by the previous call to nag_step_regsn (g02eec).

On exit: the results of the QR decomposition for the current model:

the first column of q contains c ¼ QTy (or QTW
1
2y where W is the vector of weights if

used);

the upper triangular part of columns 2 to pþ 1 contain the R matrix;

the strictly lower triangular part of columns 2 to pþ 1 contain details of the Q matrix;

the remaining pþ 1 to pþ ifr columns of contain QTXfree (or QTW
1
2Xfree),

where p ¼ nterm, or p ¼ ntermþ 1 if mean ¼ Nag MeanInclude.

26: pdq – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array q.

Constraints:

if order ¼ Nag ColMajor, pdq � n;
if order ¼ Nag RowMajor, pdq � maxipþ 2.

27: p½maxipþ 1� – double Input/Output

On entry: if istep ¼ 0, p need not be set.

If istep 6¼ 0, p must contain the values returned by the previous call to nag_step_regsn (g02eec).

On exit: the first p elements of p contain details of the QR decomposition, where p ¼ nterm, or
p ¼ ntermþ 1 if mean ¼ Nag MeanInclude.

28: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

g02 – Correlation and Regression Analysis g02eec

Mark 24 g02eec.5

../GENINT/essint.pdf
../GENINT/essint.pdf

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_DENOM_ZERO

Denominator of f statistic is � 0:0.

NE_FREE_VARS

There are no free variables in the regression.

NE_FULL_RANK

Forced variables not of full rank.

NE_INT

On entry, istep ¼ valueh i.
Constraint: istep � 0.

On entry, m ¼ valueh i.
Constraint: m � 1.

On entry, n ¼ valueh i.
Constraint: n � 2.

On entry, pdq ¼ valueh i.
Constraint: pdq > 0.

On entry, pdx ¼ valueh i.
Constraint: pdx > 0.

NE_INT_2

On entry, istep and nterm are inconsistent: istep ¼ valueh i and nterm ¼ valueh i.
On entry, pdq ¼ valueh i and n ¼ valueh i.
Constraint: pdq � n.

On entry, pdx ¼ valueh i and m ¼ valueh i.
Constraint: pdx � m.

On entry, pdx ¼ valueh i and n ¼ valueh i.
Constraint: pdx � n.

NE_INT_ARRAY

On entry, maxip is too small for number of terms given by sx: maxip ¼ valueh i.

NE_INT_ARRAY_ELEM_CONS

On entry, sx½ valueh i� < 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

g02eec NAG Library Manual

g02eec.6 Mark 24

NE_REAL

On entry, fin ¼ valueh i.
Constraint: fin � 0:0.

On entry, with nonzero istep, rss � 0:0: rss ¼ valueh i.

NE_REAL_ARRAY_ELEM_CONS

On entry, wt½ valueh i� < 0:0.

NE_ZERO_DF

Degrees of freedom for error will equal 0 if new variable is added.

On entry, number of forced variables � n, i.e., idf would be zero.

NE_ZERO_VARS

Maximum number of variables to be included is 0.

7 Accuracy

As nag_step_regsn (g02eec) uses a QR transformation the results will often be more accurate than
traditional algorithms using methods based on the cross-products of the dependent and independent
variables.

8 Parallelism and Performance

nag_step_regsn (g02eec) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

nag_step_regsn (g02eec) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

None.

10 Example

The data, from an oxygen uptake experiment, is given by Weisberg (1985). The names of the variables
are as given in Weisberg (1985). The independent and dependent variables are read and nag_step_regsn
(g02eec) is repeatedly called until addvar ¼ Nag FALSE. At each step the F statistic, the free variables
and their extra sum of squares are printed; also, except for when addvar ¼ Nag FALSE, the new
variable, the change in the residual sum of squares and the terms in the model are printed.

10.1 Program Text

/* nag_step_regsn (g02eec) Example Program.
*
* Copyright 2002 Numerical Algorithms Group.
*
* Mark 7, 2002.
*/

#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>

g02 – Correlation and Regression Analysis g02eec

Mark 24 g02eec.7

#include <nagg02.h>

int main(void)
{

/* Scalars */
double chrss, f, fin, rss;
Integer exit_status, i, idf, ifr, istep, j, m, maxip, n, nterm, pdq,

pdx;
/* Arrays */
char nag_enum_arg[40];
char *newvar = 0;
double *exss = 0, *p = 0, *q = 0, *wt = 0, *x = 0, *y = 0;
double *wtptr = 0;
Integer *sx = 0;
char **free_vars = 0, **model = 0;
const char *vname[] = { "DAY", "BOD", "TKN", "TS", "TVS", "COD" };
/* NAG Types */
Nag_OrderType order;
Nag_IncludeMean mean;
Nag_Boolean addvar = Nag_FALSE, weight;
NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define X(I, J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define X(I, J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

exit_status = 0;
printf("nag_step_regsn (g02eec) Example Program Results\n");

/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%ld%ld", &n, &m);
scanf(" %39s", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

mean = (Nag_IncludeMean) nag_enum_name_to_value(nag_enum_arg);
scanf(" %39s", nag_enum_arg);
weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
maxip = m;

/* Allocate memory */
if (!(exss = NAG_ALLOC(maxip, double)) ||

!(p = NAG_ALLOC(maxip+1, double)) ||
!(q = NAG_ALLOC(n * (maxip+2), double)) ||
!(wt = NAG_ALLOC(n, double)) ||
!(x = NAG_ALLOC(n * m, double)) ||
!(y = NAG_ALLOC(n, double)) ||
!(sx = NAG_ALLOC(m, Integer)) ||
!(free_vars = NAG_ALLOC(maxip, char *)) ||
!(model = NAG_ALLOC(maxip, char *))
)

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

#ifdef NAG_COLUMN_MAJOR
pdx = n;
pdq = n;

#else
pdx = m;
pdq = maxip+2;

#endif

g02eec NAG Library Manual

g02eec.8 Mark 24

if (weight)
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= m; ++j) scanf("%lf", &X(i, j));
scanf("%lf%lf%*[^\n]", &y[i - 1], &wt[i - 1]);
wtptr = wt;

}
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= m; ++j) scanf("%lf", &X(i, j));
scanf("%lf%*[^\n] ", &y[i - 1]);

}
}

for (j = 0; j < m; ++j) scanf("%ld", &sx[j]);
scanf("%*[^\n]");
scanf("%lf%*[^\n]", &fin);
printf("\n");

istep = 0;
for (i = 1; i <= m; ++i)

{
/* nag_step_regsn (g02eec).
* Fits a linear regression model by forward selection
*/

nag_step_regsn(order, &istep, mean, n, m, x, pdx, vname, sx, maxip, y,
wtptr, fin, &addvar, (const char **)&newvar, &chrss, &f,
(const char **)model, &nterm, &rss, &idf, &ifr,
(const char **)free_vars, exss, q, pdq, p, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_step_regsn (g02eec).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

printf("Step %ld\n", istep);
if (!addvar)

{
printf("No further variables added maximum F =%7.2f\n", f);
printf("Free variables: ");

for (j = 1; j <= ifr; ++j)
printf("%3.3s %s", free_vars[j-1], j%6 == 0 || j == ifr?"\n":" ");

printf("\nChange in residual sums of squares for free variables:\n");

printf(" ");
for (j = 1; j <= ifr; ++j)

{
printf("%9.4f", exss[j - 1]);
printf("%s", j%6 == 0 || j == ifr?"\n":" ");

}
goto END;

}
else

{
printf("Added variable is %3s\n", newvar);
printf("Change in residual sum of squares =%13.4e\n", chrss);
printf("F Statistic = %7.2f\n\n", f);
printf("Variables in model: ");

for (j = 1; j <= nterm; ++j)
printf("%3s %s", model[j-1], j%6 == 0 || j == nterm?"\n":" ");

printf("Residual sum of squares = %13.4e\n", rss);
printf("Degrees of freedom = %ld\n\n", idf);

g02 – Correlation and Regression Analysis g02eec

Mark 24 g02eec.9

if (ifr == 0)
{

printf("No free variables remaining\n");
goto END;

}

printf("%s%6s", "Free variables: ", "");
for (j = 1; j <= ifr; ++j)

{
printf("%3.3s ", free_vars[j-1]);
printf(j%6 == 0 || j == ifr?"\n":" ");

}
printf("Change in residual sums of squares for free variables:\n");
printf(" ");

for (j = 1; j <= ifr; ++j)
printf("%9.4f%s", exss[j - 1], j%6 == 0 || j == ifr?"\n":" ");

printf("\n");
}

}

END:
NAG_FREE(model);
NAG_FREE(free_vars);
NAG_FREE(exss);
NAG_FREE(p);
NAG_FREE(q);
NAG_FREE(wt);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(sx);

return exit_status;
}

10.2 Program Data

nag_step_regsn (g02eec) Example Program Data
20 6 Nag_MeanInclude Nag_FALSE
0. 1125.0 232.0 7160.0 85.9 8905.0 1.5563
7. 920.0 268.0 8804.0 86.5 7388.0 0.8976

15. 835.0 271.0 8108.0 85.2 5348.0 0.7482
22. 1000.0 237.0 6370.0 83.8 8056.0 0.7160
29. 1150.0 192.0 6441.0 82.1 6960.0 0.3010
37. 990.0 202.0 5154.0 79.2 5690.0 0.3617
44. 840.0 184.0 5896.0 81.2 6932.0 0.1139
58. 650.0 200.0 5336.0 80.6 5400.0 0.1139
65. 640.0 180.0 5041.0 78.4 3177.0 -0.2218
72. 583.0 165.0 5012.0 79.3 4461.0 -0.1549
80. 570.0 151.0 4825.0 78.7 3901.0 0.0000
86. 570.0 171.0 4391.0 78.0 5002.0 0.0000
93. 510.0 243.0 4320.0 72.3 4665.0 -0.0969

100. 555.0 147.0 3709.0 74.9 4642.0 -0.2218
107. 460.0 286.0 3969.0 74.4 4840.0 -0.3979
122. 275.0 198.0 3558.0 72.5 4479.0 -0.1549
129. 510.0 196.0 4361.0 57.7 4200.0 -0.2218
151. 165.0 210.0 3301.0 71.8 3410.0 -0.3979
171. 244.0 327.0 2964.0 72.5 3360.0 -0.5229
220. 79.0 334.0 2777.0 71.9 2599.0 -0.0458
0 1 1 1 1 2

2.0

g02eec NAG Library Manual

g02eec.10 Mark 24

10.3 Program Results

nag_step_regsn (g02eec) Example Program Results

Step 1
Added variable is TS
Change in residual sum of squares = 4.7126e-01
F Statistic = 7.38

Variables in model: COD TS
Residual sum of squares = 1.0850e+00
Degrees of freedom = 17

Free variables: TKN BOD TVS
Change in residual sums of squares for free variables:

0.1175 0.0600 0.2276

Step 2
No further variables added maximum F = 1.59
Free variables: TKN BOD TVS

Change in residual sums of squares for free variables:
0.0979 0.0207 0.0217

g02 – Correlation and Regression Analysis g02eec

Mark 24 g02eec.11 (last)

	g02eec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Draper and Smith (1985)
	Weisberg (1985)

	5 Arguments
	order
	istep
	mean
	n
	m
	x
	pdx
	var_names
	sx
	maxip
	y
	wt
	fin
	addvar
	newvar
	chrss
	f
	model
	nterm
	rss
	idf
	ifr
	free_vars
	exss
	q
	pdq
	p
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_DENOM_ZERO
	NE_FREE_VARS
	NE_FULL_RANK
	NE_INT
	NE_INT_2
	NE_INT_ARRAY
	NE_INT_ARRAY_ELEM_CONS
	NE_INTERNAL_ERROR
	NE_REAL
	NE_REAL_ARRAY_ELEM_CONS
	NE_ZERO_DF
	NE_ZERO_VARS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

