NAG Library Function Document

 nag_idwt_2d (c09ebc)

 nag_idwt_2d (c09ebc)}

1 Purpose

nag_idwt_2d (c09ebc) computes the inverse two-dimensional discrete wavelet transform (DWT) at a single level. The initialization function nag_wfilt_2d (c09abc) must be called first to set up the DWT options.

2 Specification

```
#include <nag.h>
#include <nagc09.h>
void nag_idwt_2d (Integer m, Integer n, const double ca[], Integer ldca,
    const double ch[], Integer ldch, const double cv[], Integer ldcv,
    const double cd[], Integer ldcd, double b[], Integer ldb,
    const Integer icomm[], NagError *fail)
```


3 Description

nag_idwt_2d (c09ebc) performs the inverse operation of function nag_dwt_2d (c09eac). That is, given sets of approximation, horizontal, vertical and diagonal coefficients computed by function nag_dwt 2d (c09eac) using a DWT as set up by the initialization function nag_wfilt_2d (c09abc), on a real matrix, B, nag_idwt_2d (c09ebc) will reconstruct B.

4 References

None.

5 Arguments

1: $\quad \mathbf{m}$ - Integer
Input
On entry: number of rows, m, of data matrix B.
Constraint: this must be the same as the value \mathbf{m} passed to the initialization function nag_wfilt_2d (c09abc).

2: $\quad \mathbf{n}$ - Integer
Input
On entry: number of columns, n, of data matrix B.
Constraint: this must be the same as the value \mathbf{n} passed to the initialization function nag_wfilt_2d (c09abc).

3: $\quad \mathbf{c a}[\operatorname{dim}]$ - const double
Input
Note: the dimension, dim, of the array ca must be at least ldca $\times n_{\mathrm{cn}}$ where n_{cn} is the argument nwen returned by function nag_wfilt_2d (c09abc).
The (i, j) th element of the matrix is stored in $\mathbf{c a}[(j-1) \times$ ldca $+i-1]$.
On entry: contains the n_{cm} by n_{cn} matrix of approximation coefficients, C_{a}. This array will normally be the result of some transformation on the coefficients computed by function nag_dwt_2d (c09eac).

4: ldca - Integer
Input
On entry: the stride separating matrix row elements in the array ca.
Constraint: Idca $\geq n_{\mathrm{cm}}$ where $n_{\mathrm{cm}}=n_{\mathrm{ct}} /\left(4 n_{\mathrm{cn}}\right)$ and $n_{\mathrm{cn}}, n_{\mathrm{ct}}$ are returned by the initialization function nag_wfilt_2d (c09abc).

5: $\quad \boldsymbol{c h}[\mathrm{dim}]-$ const double
Input
Note: the dimension, dim, of the array ch must be at least ldch $\times n_{\text {cn }}$ where $n_{\text {cn }}$ is the argument nwen returned by function nag_wfilt_2d (c09abc).
The (i, j) th element of the matrix is stored in $\mathbf{c h}[(j-1) \times \mathbf{l d c h}+i-1]$.
On entry: contains the n_{cm} by n_{cn} matrix of horizontal coefficients, C_{h}. This array will normally be the result of some transformation on the coefficients computed by function nag_dwt_2d (c09eac).

6: Idch - Integer
Input
On entry: the stride separating matrix row elements in the array ch.
Constraint: Idch $\geq n_{\mathrm{cm}}$ where $n_{\mathrm{cm}}=n_{\mathrm{ct}} /\left(4 n_{\mathrm{cn}}\right)$ and $n_{\mathrm{cn}}, n_{\mathrm{ct}}$ are returned by the initialization function nag_wfilt_2d (c09abc).

7: $\quad \mathbf{c v}[d i m]$ - const double
Input
Note: the dimension, dim, of the array cv must be at least ldcv $\times n_{\text {cn }}$ where $n_{\text {cn }}$ is the argument nwen returned by function nag_wfilt_2d (c09abc).

The (i, j) th element of the matrix is stored in $\mathbf{c v}[(j-1) \times \mathbf{l d e v}+i-1]$.
On entry: contains the n_{cm} by n_{cn} matrix of vertical coefficients, C_{v}. This array will normally be the result of some transformation on the coefficients computed by function nag_dwt_2d (c09eac).

8: ldcv - Integer
Input
On entry: the stride separating matrix row elements in the array cv.
Constraint: ldcv $\geq n_{\mathrm{cm}}$ where $n_{\mathrm{cm}}=n_{\mathrm{ct}} /\left(4 n_{\mathrm{cn}}\right)$ and $n_{\mathrm{cn}}, n_{\mathrm{ct}}$ are returned by the initialization function nag_wfilt_2d (c09abc).

9: $\quad \mathbf{c d}[\operatorname{dim}]$ - const double
Input
Note: the dimension, dim, of the array cd must be at least ldcd $\times n_{\mathrm{cn}}$ where n_{cn} is the argument nwen returned by function nag_wfilt_2d (c09abc).
The (i, j) th element of the matrix is stored in $\mathbf{c d}[(j-1) \times \mathbf{l d c d}+i-1]$.
On entry: contains the n_{cm} by n_{cn} matrix of diagonal coefficients, C_{d}. This array will normally be the result of some transformation on the coefficients computed by function nag_dwt_2d (c09eac).

10: ldcd - Integer
Input
On entry: the stride separating matrix row elements in the array cd.
Constraint: ldcd $\geq n_{\mathrm{cm}}$ where $n_{\mathrm{cm}}=n_{\mathrm{ct}} /\left(4 n_{\mathrm{cn}}\right)$ and $n_{\mathrm{cn}}, n_{\mathrm{ct}}$ are returned by the initialization function nag_wfilt_2d (c09abc).

11: $\quad \mathbf{b}[\mathbf{l d b} \times \mathbf{n}]-$ double
Output
Note: the (i, j) th element of the matrix B is stored in $\mathbf{b}[(j-1) \times \mathbf{l d b}+i-1]$.
On exit: the m by n reconstructed matrix, B, based on the input approximation, horizontal, vertical and diagonal coefficients and the transform options supplied to the initialization function nag_wfilt_2d (c09abc).

```
12: Idb - Integer
Input
```

On entry: the stride separating matrix row elements in the array \mathbf{b}.
Constraint: $\mathbf{l d b} \geq \mathbf{m}$.
13: icomm [180] - const Integer Communication Array
On entry: contains details of the discrete wavelet transform and the problem dimension as setup in the call to the initialization function nag_wfilt_2d (c09abc).

14: fail - NagError * Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INITIALIZATION

Either the initialization function has not been called first or icomm has been corrupted.
Either the initialization function was called with wtrans $=$ Nag_MultiLevel or icomm has been corrupted.

NE_INT

On entry, ldca $=\langle$ value \rangle.
Constraint: ldca $\geq\langle$ value \rangle, the number of wavelet coefficients in the first dimension.
On entry, lded $=\langle v a l u e\rangle$.
Constraint: lded $\geq\langle v a l u e\rangle$, the number of wavelet coefficients in the first dimension.
On entry, ldch $=\langle$ value \rangle.
Constraint: ldch $\geq\langle$ value \rangle, the number of wavelet coefficients in the first dimension.
On entry, ldcv $=\langle$ value \rangle.
Constraint: ldev $\geq\langle$ value \rangle, the number of wavelet coefficients in the first dimension.
On entry, $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{m}=\langle$ value \rangle, the value of \mathbf{m} on initialization (see nag_wfilt_2d (c09abc)).
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n}=\langle$ value \rangle, the value of \mathbf{n} on initialization (see nag_wfilt_2d (c09abc)).

NE_INT_2

On entry, $\mathbf{l d b}=\langle$ value \rangle and $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{l d b} \geq \mathbf{m}$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

nag_idwt_2d (c09ebc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See Section 10 in nag_dwt_2d (c09eac).

