f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

# NAG Library Function Documentnag_dge_copy (f16qfc)

## 1  Purpose

nag_dge_copy (f16qfc) copies a real general matrix.

## 2  Specification

 #include #include
 void nag_dge_copy (Nag_OrderType order, Nag_TransType trans, Integer m, Integer n, const double a[], Integer pda, double b[], Integer pdb, NagError *fail)

## 3  Description

nag_dge_copy (f16qfc) performs the matrix-copy operation
 $B←A or B←AT$
where $A$ and $B$ are $m$ by $n$ real rectangular matrices.

## 4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:     transNag_TransTypeInput
On entry: specifies the operation to be performed.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
$B←A$.
${\mathbf{trans}}=\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$
$B←{A}^{\mathrm{T}}$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, $\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$.
3:     mIntegerInput
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
4:     nIntegerInput
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
5:     a[$\mathit{dim}$]const doubleInput
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
On entry: the $m$ by $n$ general matrix $A$.
6:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
7:     b[$\mathit{dim}$]doubleOutput
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{n}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pdb}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{m}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pdb}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${B}_{ij}$ is stored in ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${B}_{ij}$ is stored in ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$.
On exit: the matrix $B$; $B$ is $n$ by $k$ if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, or $k$ by $n$ otherwise.
8:     pdbIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $B$ in the array b.
Constraints:
• if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{trans}}=\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
9:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_ENUM_INT_2
On entry, ${\mathbf{trans}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{trans}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INT
On entry, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

Not applicable.

None.

## 10  Example

This example copies a $4$ by $3$ real general matrix $A$ to the matrix $B$.

### 10.1  Program Text

Program Text (f16qfce.c)

### 10.2  Program Data

Program Data (f16qfce.d)

### 10.3  Program Results

Program Results (f16qfce.r)