f16 Chapter Contents
f16 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_dsy_norm (f16rcc)

## 1  Purpose

nag_dsy_norm (f16rcc) calculates the value of the $1$-norm, the $\infty$-norm, the Frobenius norm or the maximum absolute value of the elements of a real $n$ by $n$ symmetric matrix.

## 2  Specification

 #include #include
 void nag_dsy_norm (Nag_OrderType order, Nag_NormType norm, Nag_UploType uplo, Integer n, const double a[], Integer pda, double *r, NagError *fail)

## 3  Description

Given a real $n$ by $n$ symmetric matrix, $A$, nag_dsy_norm (f16rcc) calculates one of the values given by
 ${‖A‖}_{1}=\underset{j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\sum _{i=1}^{n}\left|{a}_{ij}\right|$, (the $1$norm of $A$) ${‖A‖}_{\infty }=\underset{i}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\sum _{j=1}^{n}\left|{a}_{ij}\right|$, (the $\infty$-norm of $A$) ${‖A‖}_{F}={\left(\sum _{i=1}^{n}\sum _{j=1}^{n}{\left|{a}_{ij}\right|}^{2}\right)}^{1/2}$ (the Frobenius norm of $A$), or $\underset{i,j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\left|{a}_{ij}\right|$ (the maximum absolute element value of $A$).
Note that, since $A$ is symmetric, ${‖A‖}_{1}={‖A‖}_{\infty }$.

## 4  References

The BLAS Technical Forum Standard (2001) http://www.netlib.org/blas/blast-forum

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     normNag_NormTypeInput
On entry: specifies the value to be returned.
${\mathbf{norm}}=\mathrm{Nag_OneNorm}$
The $1$-norm.
${\mathbf{norm}}=\mathrm{Nag_InfNorm}$
The $\infty$-norm.
${\mathbf{norm}}=\mathrm{Nag_FrobeniusNorm}$
The Frobenius (or Euclidean) norm.
${\mathbf{norm}}=\mathrm{Nag_MaxNorm}$
The value $\underset{i,j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\left|{a}_{ij}\right|$ (not a norm).
Constraint: ${\mathbf{norm}}=\mathrm{Nag_OneNorm}$, $\mathrm{Nag_InfNorm}$, $\mathrm{Nag_FrobeniusNorm}$ or $\mathrm{Nag_MaxNorm}$.
3:     uploNag_UploTypeInput
On entry: specifies whether the upper or lower triangular part of $A$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
The upper triangular part of $A$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
The lower triangular part of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
4:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
If $n=0$, then n is set to zero.
Constraint: ${\mathbf{n}}\ge 0$.
5:     a[$\mathit{dim}$]const doubleInput
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
On entry: the $n$ by $n$ symmetric matrix $A$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ must be stored and the elements of the array above the diagonal are not referenced.
6:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
7:     rdouble *Output
On exit: the value of the norm specified by norm.
8:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.

## 7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of The BLAS Technical Forum Standard (2001)).