f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

NAG Library Function Documentnag_zppequ (f07gtc)

1  Purpose

nag_zppequ (f07gtc) computes a diagonal scaling matrix $S$ intended to equilibrate a complex $n$ by $n$ Hermitian positive definite matrix $A$, stored in packed format, and reduce its condition number.

2  Specification

 #include #include
 void nag_zppequ (Nag_OrderType order, Nag_UploType uplo, Integer n, const Complex ap[], double s[], double *scond, double *amax, NagError *fail)

3  Description

nag_zppequ (f07gtc) computes a diagonal scaling matrix $S$ chosen so that
 $sj=1 / ajj .$
This means that the matrix $B$ given by
 $B=SAS ,$
has diagonal elements equal to unity. This in turn means that the condition number of $B$, ${\kappa }_{2}\left(B\right)$, is within a factor $n$ of the matrix of smallest possible condition number over all possible choices of diagonal scalings (see Corollary 7.6 of Higham (2002)).

4  References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: indicates whether the upper or lower triangular part of $A$ is stored in the array ap, as follows:
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
The upper triangle of $A$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
The lower triangle of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     ap[$\mathit{dim}$]const ComplexInput
Note: the dimension, dim, of the array ap must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
On entry: the $n$ by $n$ Hermitian matrix $A$, packed by rows or columns.
The storage of elements ${A}_{ij}$ depends on the order and uplo arguments as follows:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(j-1\right)×j/2+i-1\right]$, for $i\le j$;
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(2n-j\right)×\left(j-1\right)/2+i-1\right]$, for $i\ge j$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(2n-i\right)×\left(i-1\right)/2+j-1\right]$, for $i\le j$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(i-1\right)×i/2+j-1\right]$, for $i\ge j$.
Only the elements of ap corresponding to the diagonal elements $A$ are referenced.
5:     s[n]doubleOutput
On exit: if NE_NOERROR, s contains the diagonal elements of the scaling matrix $S$.
6:     sconddouble *Output
On exit: if NE_NOERROR, scond contains the ratio of the smallest value of s to the largest value of s. If ${\mathbf{scond}}\ge 0.1$ and amax is neither too large nor too small, it is not worth scaling by $S$.
7:     amaxdouble *Output
On exit: $\mathrm{max}\left|{a}_{ij}\right|$. If amax is very close to overflow or underflow, the matrix $A$ should be scaled.
8:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_MAT_NOT_POS_DEF
The $〈\mathit{\text{value}}〉$th diagonal element of $A$ is not positive (and hence $A$ cannot be positive definite).

7  Accuracy

The computed scale factors will be close to the exact scale factors.

The real analogue of this function is nag_dppequ (f07gfc).

9  Example

This example equilibrates the Hermitian positive definite matrix $A$ given by
 $A = (3.23 ((1.51-1.92i 1.90+0.84i×105 ((0.42+2.50i (1.51+1.92i ((3.58 -0.23+1.11i×105 -1.18+1.37i 1.90-0.84i×105 -0.23-1.11i×105 4.09×1010 (2.33-0.14i×105 (0.42-2.50i (-1.18-1.37i 2.33+0.14i×105 ((4.29 .$
Details of the scaling factors and the scaled matrix are output.

9.1  Program Text

Program Text (f07gtce.c)

9.2  Program Data

Program Data (f07gtce.d)

9.3  Program Results

Program Results (f07gtce.r)