Implied Volatility using Python’s Pandas Library

Brian Spector

New York Quantitative Python Users Group
March 6th 2014
Overview

• Introduction
• Motivation
• Python
• Pandas
• Implied Volatility
 – Timings in python
 – Different Volatility Curves
 – Fitting data points
Numerical Algorithms Group

• Not-for-profit organization committed to research & development
• NAG provides mathematical and statistical algorithm libraries and services widely used in industry and academia
• Library code written and contributed by some of the world’s most renowned mathematicians and computer scientists
• NAG Libraries available in C, MATLAB, .NET, Fortran, Java, SMP/Multicore, Excel, Python
NAG Library Contents

- Root Finding
- Summation of Series
- Quadrature
- Ordinary Differential Equations
- Partial Differential Equations
- Numerical Differentiation
- Integral Equations
- Mesh Generation
- Interpolation
- Curve and Surface Fitting
- Optimization
- Approximations of Special Functions

- Dense Linear Algebra
- Sparse Linear Algebra
- Correlation & Regression Analysis
- Multivariate Methods
- Analysis of Variance
- Random Number Generators
- Univariate Estimation
- Nonparametric Statistics
- Smoothing in Statistics
- Contingency Table Analysis
- Survival Analysis
- Time Series Analysis
- Operations Research
Motivation

• Data available from CBOE:
 • https://www.cboe.com/delayedquote/QuoteTableDownload.aspx
Motivation

• Data available from CBOE:

AAPL (APPLE INC), 531.03, +3.27, Mar 04 2014 @ 12:18 ET, Bid, 531.03, Ask, 531.21, Size, 5x1, Vol, 3803030, Calls, Last Sale, Net, Bid, Ask, Vol, Open Int, Puts, Last Sale, Net, Bid, Ask, Vol, Open Int.

14 Mar 400.00 (AAPL1407C400), 132.00, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400), 0.01, 0
14 Mar 400.00 (AAPL1407C400-4), 0.0, 0.0, 129.35, 133.05, 0.3, 14 Mar 400.00 (AAPL1407C400-4), 0.0, 0
14 Mar 400.00 (AAPL1407C400-8), 0.0, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400-8), 0.02, 0
14 Mar 400.00 (AAPL1407C400-A), 0.0, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400-A), 0.0, 0
14 Mar 400.00 (AAPL1407C400-B), 0.0, 0.0, 129.35, 133.20, 0.3, 14 Mar 400.00 (AAPL1407C400-B), 0.0, 0
14 Mar 400.00 (AAPL1407C400-E), 144.33, 0.0, 129.35, 133.60, 0.3, 14 Mar 400.00 (AAPL1407C400-E), 0.0, 0
14 Mar 400.00 (AAPL1407C400-I), 0.0, 0.0, 129.35, 133.05, 0.3, 14 Mar 400.00 (AAPL1407C400-I), 0.0, 0
14 Mar 400.00 (AAPL1407C400-J), 0.0, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400-J), 0.0, 0
14 Mar 400.00 (AAPL1407C400-O), 109.60, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400-O), 0.0, 0
14 Mar 400.00 (AAPL1407C400-P), 0.0, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400-P), 0.01, 0
14 Mar 400.00 (AAPL1407C400-S), 0.0, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400-S), 0.0, 0
14 Mar 400.00 (AAPL1407C400-X), 132.00, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400-X), 0.0, 0
14 Mar 400.00 (AAPL1407C400-Y), 0.0, 0.0, 130.10, 132.00, 0.3, 14 Mar 400.00 (AAPL1407C400-Y), 0.0, 0
14 Mar 400.00 (AAPL1407C400), 0.0, 0.0, 129.50, 133.20, 0.0, 14 Mar 400.00 (AAPL1407C400), 0.0, 0
14 Mar 400.00 (AAPL1407C400-4), 0.0, 0.0, 129.35, 133.25, 0.0, 14 Mar 400.00 (AAPL1407C400-4), 0.0, 0
14 Mar 400.00 (AAPL1407C400-8), 0.0, 0.0, 129.10, 133.35, 0.0, 14 Mar 400.00 (AAPL1407C400-8), 0.0, 0
14 Mar 400.00 (AAPL1407C400-A), 0.0, 0.0, 129.50, 133.20, 0.0, 14 Mar 400.00 (AAPL1407C400-A), 0.0, 0
14 Mar 400.00 (AAPL1407C400-B), 0.0, 0.0, 129.05, 133.30, 0.0, 14 Mar 400.00 (AAPL1407C400-B), 0.0, 0
14 Mar 400.00 (AAPL1407C400-E), 0.0, 0.0, 129.05, 133.45, 0.0, 14 Mar 400.00 (AAPL1407C400-E), 0.0, 0
14 Mar 400.00 (AAPL1407C400-I), 0.0, 0.0, 128.85, 133.45, 0.0, 14 Mar 400.00 (AAPL1407C400-I), 0.0, 0
14 Mar 400.00 (AAPL1407C400-J), 0.0, 0.0, 129.10, 133.30, 0.0, 14 Mar 400.00 (AAPL1407C400-J), 0.0, 0
14 Mar 400.00 (AAPL1407C400-O), 0.0, 0.0, 129.05, 133.30, 0.0, 14 Mar 400.00 (AAPL1407C400-O), 0.0, 0
14 Mar 400.00 (AAPL1407C400-P), 0.0, 0.0, 129.40, 133.15, 0.0, 14 Mar 400.00 (AAPL1407C400-P), 0.0, 0
14 Mar 400.00 (AAPL1407C400-S), 0.0, 0.0, 129.40, 133.15, 0.0, 14 Mar 400.00 (AAPL1407C400-S), 0.0
Python

• Why use python?
 – Cheap
 – Easy to learn
 – Powerful
Python

• Why use python?
 – Cheap
 – Easy to learn
 – Powerful

• Why use python over R?
 – “I would rather do math in a programming language than programming in a math language.”
Python

• What python has:
 – Many built-in powerful packages
 – OO programming
 • Classes
 • Base + Derived Classes
 – Plotting

• What python does not have:
 – Multiple constructors
 – Pointers
 – ???
numpynumpy

• Has made numerical computing much easier in recent years.
• numpy matrices / arrays
• numpy.linalg
• Behind many of these functions are LAPACK + BLAS!
scipy

- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fftpack)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse Eigenvalue Problems with ARPACK

- Compressed Sparse Graph Routines scipy.sparse.csgraph
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)
- Multidimensional image processing (scipy.ndimage)
nag4py

• nag4py (The NAG Library for Python)
• Built on top of NAG C Library + Documentation
• 1600 NAG functions easily accessible from python
• 15 examples programs to help users call NAG functions

from nag4py.c05 import c05ayc
from nag4py.util import NagError, Nag_Comm
pandas

• Data Analysis Package
• Many nice built in functions
• Common tools:
 – Series / DataFrame
 – Reading + Writing CSVs
 – Indexing, missing data, reshaping
 – Common time series functionality

(Examples)
Black Scholes Formula for pricing a call/put option is a function of 6 variables:

\[C(S_0, K, T, \sigma, r, d) = S_0 N(d_1) - Ke^{-rT}N(d_2) \]

Where

\[d_{1,2} = \frac{1}{\sigma \sqrt{T}} \left[\ln \left(\frac{S}{K} \right) + T \left(r \pm \frac{\sigma^2}{2} \right) \right] \]

\[N(x) = \text{Standard Normal CDF} \]
Implied Volatility

• We can observe the following in the market:

• \(C(S_0, K, T, \sigma, r, d) = C \)

• But what is \(\sigma \)?

• \(\sigma_{imp} \rightarrow C_{BS}(S_0, K, T, \sigma_{imp}, r, d) = Market Price \)
Implied Volatility

- We can observe the following in the market:
 - $C(S_0, K, T, \sigma, r, d) = C$
- But what is σ?
 - $\sigma_{imp} \rightarrow C_{BS}(S_0, K, T, \sigma_{imp}, r, d) = Market\ Price$
- Does σ_{imp} exist?
Implied Volatility

- We can observe the following in the market:
 - $C(S_0, K, T, \sigma, r, d) = C$
- But what is σ?
 - $\sigma_{imp} \rightarrow C_{BS}(S_0, K, T, \sigma_{imp}, r, d) = Market\ Price$
- Does σ_{imp} exist?
 - Yes

(Examples)
Implied Volatility – Different Curves?
Implied Volatility – Different Curves?

- **No hyphen or letter present** = Composite
 A = AMEX American Stock Exchange
 B = BOX Boston Stock Exchange - Options
 E = CBOE Chicago Board Options Exchange
 I = BATS
 J = NASDAQ OMX BX
 O = NASDAQ OMX
 P = NYSE Arca
 X = PHLX Philadelphia Stock Exchange
 Y = C2 Exchange
 4 = Miami Options Exchange
 8 = ISE International Securities Exchange
Implied Volatility

• Reasons for skews/smiles?
 – Risk Preferences
 – Fat tailed distributions
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td></td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td></td>
</tr>
<tr>
<td>nag4py</td>
<td></td>
</tr>
<tr>
<td>NAG C</td>
<td></td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~60 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td></td>
</tr>
<tr>
<td>nag4py</td>
<td></td>
</tr>
<tr>
<td>NAG C</td>
<td></td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~60 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td>~10 seconds</td>
</tr>
<tr>
<td>nag4py</td>
<td></td>
</tr>
<tr>
<td>NAG C</td>
<td></td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~60 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td>~10 seconds</td>
</tr>
<tr>
<td>nag4py</td>
<td>~3 seconds</td>
</tr>
<tr>
<td>NAG C</td>
<td></td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~60 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td>~10 seconds</td>
</tr>
<tr>
<td>nag4py</td>
<td>~3 seconds</td>
</tr>
<tr>
<td>NAG C</td>
<td>~.15 seconds</td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~60 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td>~10 seconds</td>
</tr>
<tr>
<td>nag4py</td>
<td>~3 seconds</td>
</tr>
<tr>
<td>NAG C</td>
<td>~.15 seconds</td>
</tr>
</tbody>
</table>

- **Derivatives?**
- **We have the derivative, vega**
 - \(\frac{\partial C}{\partial \sigma} = S \times T \times N'(d_1) \)
Fitting Data Points

• In our script we had $k = l = 3$...

 – What if we try different values?
Fitting Data Points

• In our script we had \(k = l = 3 \)...
 – What if we try different values?
 • Poor results, can we do better?
 • Two dimensional spline
Thank You

Questions?

- Further reading see:
 - http://pandas.pydata.org/
 - http://www.nag.co.uk/python.asp