Asset Prices in General Equilibrium with Transactions Costs and Recursive Utility

Adrian Buss1, Raman Uppal,2, Grigory Vilkov1

1Goethe University Frankfurt
2EDHEC Business School

January 26, 2011
NAG Quant Day in HoF, Frankfurt
Research Questions/ Objective

Study Asset Prices in an Economy with:
- Multiple agents
- Heterogeneous recursive (Epstein-Zin) preferences
- Heterogeneous beliefs
- Exchange economy
- Multiple assets (trees)
- Proportional transaction costs (to value and number of shares traded)
- Possibility of other frictions (shortsale, leverage constraints, etc)

Consequences of introducing TC for:
- Interest rate
- Stock price
- Expected return on the stock
- Volatility of stock and bond returns
Past Research/ Literature Review I

- **General Equilibrium with TC**

- **General Equilibrium with multiple agents and recursive utility**
 - Dumas, Uppal and Wang 2000, ...

- **Partial Equilibrium with TC**
 - Davis and Norman 1990, Duffie and Sun 1990, Dumas and Luciano 1991, Muthuraman and Kumar 2006, ...

- **Solution methods**
 - Dumas and Lyasoff 2010, ...
Helicopter View

The Task and its Treatment

- Discrete time and space setup: recombining tree
- GE problems: backward-forward system of equations
- Use Dumas and Lyasoff 2010 time shift: backward system
- Transaction costs: additional path-dependency
- Enhanced numerical scheme to deal with TC

Tools and NAG benefits

- Each Node of a tree/ state variables grid: system of equations
- Each system of equations: switching system depending on solver value
- Each system of equations: multivariate interpolation
- Use Matlab with NAG Toolbox: solver and interpolation
- Benefits compared to Matlab alone: > 1,500x speedup
Problem Formulation

Two agents, $l = 1, 2$ with utility function $u_{l,t}(c_{l,t,s})$, each solving:

$$\max_{c_{l,t,s}, \theta_{l,t,s}} u_{l,t}(c_{l,t,s}) + E_t \left[\sum_{\tau=1}^{T-t} u_{l,t+\tau}(c_{l,t+\tau}) \right]$$

subject to the floating budget constraint:

$$c_{l,t,s} + \theta_{l,t,s}^B B_{t,s} + \theta_{l,t,s}^S S_{l,t,s} + \tau(\theta_{l,t,s}^S, \theta_{l,t-1,s}^S, S_{l,t,s}, k) = \theta_{l,t-1,s}^B B_{t,s} + \theta_{l,t-1,s}^S (S_{l,t,s} + d_{t,s}),$$

where $\tau(\theta_{l,t,s}^S, \theta_{l,t-1,s}^S, S_{l,t,s}, k)$ — transaction costs function

++GE: market clearing conditions, kernel conditions
Optimality Conditions (FONC)

For each time t, each state (node) s, and each agent l, we have

1. $u'_{l,t} = \lambda_{l,t,s}$

2. $E_t\left[u'_{l,t+1}B_{t+1,s+}\right] = \lambda_{l,t,s}B_{t,s}$

3. $E_t\left[u'_{l,t+1}\left(S_{l,t+1,s+} + d_{t+1,s+} - \frac{\partial \tau}{\partial \theta^S_{l,t,s}} (\theta^S_{l,t+1,s+}, \theta^S_{l,t,s}, S_{l,t+1,s+}, k)\right)\right] = \lambda_{l,t,s}\left(S_{l,t,s} + \frac{\partial \tau}{\partial \theta^S_{l,t,s}} (\theta^S_{l,t,s}, \theta^S_{l,t-1,s-}, S_{l,t,s}, k)\right)$

4. $c_{l,t,s} + \theta^B_{l,t,s}B_{t,s} + \theta^S_{l,t,s}S_{l,t,s} + \tau(\theta^S_{l,t,s}, \theta^S_{l,t-1,s-}, S_{l,t,s}, k) = \theta^B_{l,t-1,s-}B_{t,s} + \theta^S_{l,t-1,s-}(S_{l,t,s} + d_{t,s})$

Assuming proportional Transaction costs:

$$\frac{\partial \tau}{\partial \theta^S_{l,t,s}}(\theta^S_{l,t,s}, \theta^S_{l,t-1,s-}, S_{l,t,s}, k) = \frac{\partial \text{abs}(\theta^S_{l,t,s} - \theta^S_{l,t-1,s-})}{\partial \theta^S_{l,t,s}} \cdot S_{l,t,s} \cdot k$$
Optimality Conditions: System of Equations

Proportional Transaction Costs → No-Trade and Trade Regions

For each value of the state variables on a grid, solve the following:

No-Trade Region (NTR) – no trading takes place
- Budget equations
- Market clearing conditions
- Supply equations

Trade Region (TR) – agents trade
- Budget equations
- Market clearing conditions
- Supply equations
- Kernel conditions
Traditional Numerical Scheme: Formulation (w/o TC)

State variables (grid over):
- (traditionally) entering wealth $\theta_{l,t-1,s-}^B B_{t,s} + \theta_{l,t-1,s-}^S (S_{l,t,s} + d_{t,s})$
- (if with TC path-dependency) past portfolio holdings $\theta_{l,t-1,s-}^S$

Algorithm
- Work backwards
- Solve for current consumption $c_{l,t,s}$ and portfolio holdings $\theta_{l,t,s}^{S,B}$
- For each grid value interpolate $u'_{l,t+1} (c_{l,t+1,s+}, S_{l,t+1,s+}, B_{l,t+1,s+}$
- Create interpolating function for the earlier step
Traditional Numerical Scheme: Problems

The system is backward-forward!

For c_t and θ_t one needs:

- Future marginal utility $u'_{l,t+1}(c_{l,t+1},s_+)$
- Future asset prices $S_{l,t+1,s+}, B_{l,t+1,s+}$
- Past portfolio holdings $\theta_{l,t-1,s-}^{B,S}$

c_t and θ_t affects:

- Future wealth, and hence $u'_{l,t+1}(c_{l,t+1},s_+), S_{l,t+1,s+}, B_{l,t+1,s+}$

One needs the convergence of the solution via expectation step

- Takes time..
- No guarantee of a positive outcome...
- Interpolation of a marginal utility is quite unstable...
Adjusting the Numerical Scheme: Principle

Major change:

Shift all equations (except for kernel condition) one time period forward!

State variables (grid over):

- Current consumption $c_{l,t,s}$
- (if with TC path-dependency) split the solution into two steps:
 - ▶ $\frac{\partial \tau}{\partial \theta^S_{l,t,s}}(\theta^S_{l,t,s}, \theta^S_{l,t-1,s-}, S_{l,t,s}, k) = +1/ - 1 \times S_t k$ to get NTR
 - ▶ Past portfolio holdings $\theta^S_{l,t-1,s-}$ inside NTR

Idea of the Solution

- Work backwards
- Split the solution at each time point into two steps
 - ▶ Solve for the NTR boundaries with 2-point grid $=$ {Trade, No Trade}
 - ▶ Solve the system inside of the NTR with full asset holdings grid
- Create distinct interpolating functions for each case
- Change the system of equations depending on where you are today
Adjusting the Numerical Scheme: Principle

Algorithm

- Work backwards

 Solve for the boundaries of the NTR
- Solve for future consumption $c_{l,t+1,s+}$ and current portfolio $\theta_{l,t,s}^{S,B}$
- For each grid value interpolate $S_{l,t+1,s+}, B_{l,t+1,s+}, \theta_{l,t+1,s+}^{S,B}$
- Create interpolating function for the earlier step

Solve inside of NTR

- Solve for future consumption $c_{l,t+1,s+}$ and current bond holdings $\theta_{l,t,s}^B$
- NTR \rightarrow stock holdings $\theta_{l,t,s}^S$ are carried forward from $t - 1$
- For each grid value interpolate $S_{l,t+1,s+}, B_{l,t+1,s+}, \theta_{l,t+1,s+}^{S,B}$
- Create interpolating function for the earlier step
Using NAG: Functions Used

Multidimensional Interpolation

- One asset with TC
 - `e01sg` – modified Shepard’s method, two variables
 - `e01sh` – evaluate interpolant computed by `e01sg`, two variables
- Two assets with TC
 - `e01sg` – modified Shepard’s method, two variables
 - `e01sh` – evaluate interpolant computed by `e01sg`, two variables
 - `e01tg` – modified Shepard’s method, three variables
 - `e01th` – evaluate interpolant computed by `e01tg`, three variables

Solution of the System of Equations

- `c05nc` – system of nonlinear equations using function values only
Using NAG: Pros and Cons

Multidimensional Interpolation

NAG
- allows to save the interpolant in a structure, and use it later
- takes input table as vector, and can deal with non-square grids
- uses quadratic splines
- is limited by 3-dim interpolations
- has some “collinearity problems” when the step goes down

Matlab
- computes the interpolant on the fly
- only takes matrices as inputs, hence grid limitations
- uses cubic splines
- can go to any dimension

→ 50 – 100 times speed improvement by using NAG

Caution: Matlab may be more accurate due to higher dimension
Using NAG: Pros and Cons

Solution of the System of Equations

- NAG needs global variables: dangerous (e.g., parallel execution)
- Matblab can take parameters in the function
- NAG is 3 – 10 times faster