
Using random projections to accelerate numerical linear algebra
with the NAG Library

Philip Maybank Lawrence Mulholland (Numerical Algorithms Group)

Background
Historically NAG was a key contributor to the design and implemen-
tation of the widely used LAPACK software for numerical linear alge-
bra. An implementation of LAPACK was subsequently incorporated
into the NAG Library. Recently NAG has been exploring the use of
random projection based algorithms for the solution of large-scale nu-
merical linear algebra problems, that might be more efficient than cur-
rent LAPACK algorithms. Our work to date has mainly focused on
the case of dense matrices that fit into core memory, and on evaluating
whether Randomized Numerical Linear Algebra (RNLA) algorithms
outperform LAPACK in terms of computational efficiency. This work
has led to the incorporation of new routines for RNLA into the next
release (Mark 27) of the NAG Library. Applications where we expect
these routines to be used include PCA and linear regression for large
datasets.

Random projections for SVD
Halko et al (2011) presented a randomized SVD algorithm that is struc-
tured as follows:

1. Apply a random projection to input matrix, Y = AΩ.

2. Apply pivoted QR decomposition to Y .

3. Form SVD by row extraction, A ≈ UΣV T .

This algorithm will typically be faster than LAPACK’s full SVD on
large matrices and is well suited to problems where A is rank deficient,
or only a small number of singular vectors / values are needed.

Random projections for iterative least squares
Avron et al (2010) presented a randomized least squares solver called
Blendenpik. Blendenpik uses an iterative least squares algorithm called
LSQR with a preconditioner that is generated as follows,

1. Apply a random projection to data matrix, Y = AΩ.

2. Apply QR decomposition, Y = QR.

Then R−1 is used as a preconditioner in LSQR. Again this algorithm
will typically be faster than LAPACK’s least squares solver on large
matrices. When A is ill-conditioned, LSQR with no preconditioner
requires significantly more iterations to converge. The preconditioner
obtained from the random projection solves this problem, i.e., LSQR
will typically converge in 20 to 50 iterations even for ill-conditioned A.

SVD benchmark
Figure 1: SVDs for two different problem sizes. The column dimen-
sion was n = m/20, the rank was r = m/100. The dimension of the
random projection was set to r + 5. The SVDs were calculated using a
pre-release Mark 27 build of the NAG Library for Python with MKL.
The LAPACK solver is called through lapackeig.dgesvd and the
NAG RNLA solver is called through rnla.svd rowext real. The
relative timings are similar for single-threaded and multithreaded im-
plementations (results not shown). The results were generated on a
Windows machine with 16GB of RAM and 6 cores.

Full SVD Singular values only
0
1
2
3
4
5
6

Ef
fic

ie
nc

y

rows = 10k, matrix size = 5m
LAPACK
NAG RNLA

Full SVD Singular values only
0
1
2
3
4
5
6

Ef
fic

ie
nc

y

rows = 50k, matrix size = 125m
LAPACK
NAG RNLA

Iterative least squares benchmark
Figure 2: least squares solvers for two problem sizes and a fixed
condition number of 106. The column dimension was n = m/40.
The dimension of the random projection was set to 10n. As
above, the least squares problem was solved using a pre-release
Mark 27 build of the NAG Library for Python. The LAPACK
solver is called through lapackeig.dgels and the NAG RNLA
solver is called through linsys.real gen sparse lsqsol and
rnla.randproj dct real. The timings were similar for a range
of condition numbers (results not shown), and were generated on the
same machine as the SVD benchmark.

1 MKL thread 6 MKL threads
0

1

2

Ef
fic

ie
nc

y

rows = 20k, matrix size = 10m
LAPACK
NAG RNLA

1 MKL thread 6 MKL threads
0

1

2

Ef
fic

ie
nc

y

rows = 120k, matrix size = 360m
LAPACK
NAG RNLA

Getting started with the NAG Library
Search for NAG Library for Python documentation, and check out the
NAGPythonLibraryTraining repository on GitHub. Written as
Jupyter notebooks, the training materials are designed to demonstrate
a range of algorithms that are available in the NAG Library. The NAG
Library for Python calls compiled Fortran code. Performance is sim-
ilar to code that is written exclusively in Fortran. The NAG Library
for Python has consistent user-friendly interfaces and documentation
for a comprehensive library of algorithms. The NAG Library is an
attractive alternative to open-source packages both for researchers pro-
toyping novel algorithms and software developers writing production
code.

How to contribute to the NAG Library
Students and academic researchers regularly contribute to NAG’s work
in a number of different ways. For example:

• Undergraduate student placements with programming experience
adapt existing numerical codes for inclusion in the NAG Library.

• Graduate student placements in mathematical sciences review pub-
lished academic research to identify and then implement new algo-
rithms for the NAG Library.

• NAG-sponsored PhD students develop novel algorithms that are
then implemented by numerical software developers at NAG.

• Knowledge Transfer Partnerships (KTPs) between NAG and uni-
versities fund postdoctoral researchers.

• Senior academics are invited to give technical seminars at NAG that
help to shape the direction of NAG’s development work.

Many of the skills and knowledge required to effectively write NAG
Library code can be picked up within a few months assuming a mod-
erate level of numerical programming experience and familiarity with
command-line tools.

References
Avron H, Maymounkov P, Toledo S, (2010) Blendenpik: Supercharg-
ing LAPACK’s least squares solver, SIAM Journal on Scientific Com-
puting.

Halko N, Martinsson P G, Tropp J A, (2011) Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM review.

May 2019 philip.maybank@nag.co.uk www.nag.com


