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Introduction

Algorithmic differentiation can provide sensitivity analysis, accurate to machine precision
for all your favorite simulations. Given there are multiple techniques, like tangent and
adjoint modes, check-pointing, preaccumulation, code-gen, etc., it can be challenging
to apply AD in an optimal manner. Most of the time there is a more innovative way to
combine the techniques, than just running plain Tangent or Adjoint AD.

Algorithmic Differentiation
Let y = F(x) : Rn → Rm be implemented as a differentiable program. Tangent AD
yields the Jacobian-free Jacobian-matrix product

Rm ∋ ẏ = Ḟ(x, ẋ) = F ′(x) · ẋ

whereas Adjoint AD yields the matrix-Jacobian product

R1×n ∋ x̄ = F̄(x, ȳ) = ȳ · F ′(x).

The Jacobian F ′ can be accumulated at O(F ′) ≤ O(n) · COST(Ḟ) and O(F ′) ≤
O(m) · COST(F̄) respectively.

Jacobian Chaining
Let’s consider F consisting of the elemental functions Fi : Rni → Rmi, i = 1, . . . , p

with the tangents Ḟi and adjoints F̄i. A simple compute graph (DAG) for p = 2 could
look like this:
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For the easier application of elimination techniques, [3] introduces the Dual Computa-
tional graph (dual c-graph):
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The Jacobian F ′ can be constructed from the dual c-graph as a Jacobian chain product
F ′ = F ′

2 ·F ′
1. Since we have tangents and adjoints, not Jacobians, we need to accumulate

F ′ via the Jacobian-free matrix products that Tangent and Adjoint AD provide. Let’s
assume n = n1 = 4, m1 = n2 = 2, m = m2 = 32 and COST(F1) = c(F2) = 100.
Due to the associativity of matrix chain products and the resulting bracketing problem
[2] we get the following eight options with their respective costs:

▶ F ′ = Ḟ2 · F ′
1 = Ḟ2 · (Ḟ1 · In1

) ⇒ COST(F ′) = 800

▶ F ′ = Ḟ2 · F ′
1 = Ḟ2 · (Im1

· F̄1) ⇒ COST(F ′) = 600

▶ F ′ = F ′
2 · F̄1 = (Im2

· F̄2) · F̄1 ⇒ COST(F ′) = 6400

▶ F ′ = F ′
2 · F̄1 = (Ḟ2 · In2

) · F̄1 ⇒ COST(F ′) = 3400

▶ F ′ = F ′
2 · F ′

1 = (Ḟ2 · In2
) · (Im1

· F̄1) ⇒ COST(F ′) = 656

▶ F ′ = F ′
2 · F ′

1 = (Im2
· F̄2) · (Im1

· F̄1) ⇒ COST(F ′) = 3656

▶ F ′ = F ′
2 · F ′

1 = (Im2
· F̄2) · (Ḟ1 · In1

) ⇒ COST(F ′) = 3856

▶ F ′ = F ′
2 · F ′

1 = (Ḟ2 · In2
) · (Ḟ1 · In1

) ⇒ COST(F ′) = 856

The optimization problem to find the computationally least expensive Jacobian accu-
mulation is NP-complete as proven in [4, 5, 9]. AD Mission Planning tries to exploit
heuristics to find feasible (persistent memory requirements) and (near-)optimal solutions
which prescribe the preferred AD modes (Tangent or Adjoint) for each elemental func-
tion.

Result and discussions

For illustration, we consider two Newton steps xi+1 = xi − R ′(xi, p)−1 · R(xi, p)

applied to a parameterized system of nonlinear equations R(x(p), p) = 0 with twice
continuously differentiable residual R : Rn ×Rm → Rn and regular Jacobian R ′ ≡ dR

dx
.

With Ri = R(xi, p) the DAG can be depicted as follows:
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We chose m = n = 3 with estimates for the tangent costs attached to the edges.
Adjoints are assumed to be twice as expensive as tangents which tends to be optimistic
for real-world applications.

Newton AD mission plan optimization
Preaccumulate All Tangent Adjoint Greedy Minimize Fill-in Branch & Bound

No 1608 1608 2181 1182 1155

Yes (+966) 1404 702 810 486 486

The table lists different optimization configurations. We compare plain adjoint and tan-
gent modes against a Greedy and a Minimize Fill-in heuristic. A branch and bound
algorithm gives us the true optimum. While the Greedy heuristic produces even worse
results than plain tangents or adjoints, the Minimize Fill-in heuristic is actually very close
to the optimum. This is even more impressive when we consider the different run times
of the optimizer. The heuristics give us a result in a fraction of a second while the
branch and bound algorithm actually took over a day to finish.
We have the option to preaccumulate all elemental Jacobians before we start with the
elimination. This will reduce the run time (especially for branch and bound) but result
in sub-optimal solutions in almost all cases.

Summary and Outlook

As shown above, without guidance from our ADMission Software one could easily miss
out on better performance for their derivative calculations. Even optimizing only the
combination of tangent and adjoint modes can improve the performance immensely. A
preview of the ADMission Software is available on our GitHub page (see QR code). In the
future, we’d like to expand the optimization to more AD concepts, like check-pointing,
parallel taping, path-wise adjoints, implicit function theorem (see the presentation by
Uwe Naumann), etc., and consider higher-order derivatives. Integration into our AD
tool dco/c++ [11] is planned as well.

ADMission Pipeline

Our software will eventually provide an entire pipeline that helps the users to optimize
their AD code. Four major tasks have to be solved:

1 High-level DAG extraction from arbitrary programs (✗)
2 DAG annotation with run time and memory requirements (✗)
3 AD mission plan optimization (✓)
4 Realization of the optimal AD plan via an AD tool (✗)

The steps should be automated as much as possible but still allow the user to intervene
and supply the program with insights about the code.
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