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Results for Local Volatility Monte Carlo Kernel
The table below gives runtimes (in ms) of the Monte Carlo kernel (pas-
sive), the handwritten adjoint (handwritten), the adjoint via the new
dco ntr type, and the adjoint via dco/c++ taping. Figures in brack-
ets are adjoint time as multiple of passive time.

Linux
clang 3.6 gcc 4.7 nvcc 7.5

passive 1,461 1,406 18
handwritten 2,997 (2x) 2,808 (2x) 89 (4.9x)
dco ntr 3,031 (2x) 3,025 (2.2x) 83 (4.6x)

dco/c++ tape 13,579 (9.3x) 11,011 (7.2x) N/A
Windows

clang 3.8 VS2015 Intel2015
passive 1,172 1,510 1,421

handwritten 1,906 (1.6x) 1,992 (1.3x) 1,876 (1.3x)
dco ntr 4,384 (3.7x) 10,241 (6.9x) 11,671 (6.8x)

dco/c++ tape 16,125 (16x) 24,025 (15.9x) 18,833 (16x)

Results are all on the same machine equipped with a K20c graphics
card. Note that CUDA 7.5 does not support C++11 on Windows. The
clang compiler is truly impressive on both platforms. Intel 15.0 on
Linux gives dco ntr runtime of 9,725ms. Although results on Win-
dows are not as good as on Linux, the memory use on all platforms is
always as efficient as a handwritten adjoint.

Benefits of New dco/c++ Type
• Single “natural looking” source for both primal and adjoint

• Primal code can be changed and adjoint is always in sync

• Adjoint runtime often as fast as handwritten, and much faster than
tape

• Memory use as efficient as handwritten adjoint

• The dco ntr type works with any C++11 compiler

The new type system is under development and will be part of a future
dco/c++ release. NAG encourages anyone interested in the technol-
ogy to contact us as supported early access can be arranged and would
be beneficial to both parties.
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Local Volatility Monte Carlo Source Code
template<class FP, class ARRAY>
void getVol(const FP& x, int n, const ARRAY& knots,

const ARRAY& coeffs, const ARRAY& extrap, FP& sigma) {
// Linearly extrapolate in the wings
if(x <= knots[3]) {

sigma = extrap[0] + extrap[1]*(x - knots[3]);
} else if(x >= knots[n]) {

sigma = extrap[2] + extrap[3]*(x - knots[n]);
} else {

sigma = evalSpline(x, n, knots, coeffs);
}

}
template<FP, class ARRAY, class OARRAY>
void compute(const ARRAY& d_S0, const ARRAY& d_rd, ... [snip]

..., const float * d_Z, OARRAY d_logS, float *d_locVolCKP) {
const auto S0 = d_S0[dim]; const auto rd = d_rd[0];
const auto rf = d_rf[dim]; const auto dt = d_dt[0];
const auto sqrtdt = sqrt(dt); const auto logS0 = log(S0);

DCO_FOR(FP, i, 0, nTimeSteps-1) // Time step loop
{
auto id_Z = d_Z + i*nPaths;
auto id_logS = d_logS + dim*stride + i*nPaths;
auto id_locVol = d_locVol + dim*stride + i*nPaths;
// Get thread-safe high performance input subarrays of size ns & 4
auto knots = dco_ntr::input_subarray(d_knots + i*ns, ns);
auto coeffs = dco_ntr::input_subarray(d_coeffs + i*ns, ns);
auto extrap = dco_ntr::input_subarray(d_extrap + i*4, 4);
FP sigma(0); // Local vol, computed or loaded from checkpt
DCO_FOR(FP, p, threadId, nPaths-1, nthds) // Path loop
{
FP logSi(0);
DCO_IF(FP, i==0 ) {
logSi = logS0;

} DCO_ELSE {
logSi = id_logS[-nPaths + p];

}
DCO_ENDIF
const auto Si = exp( logSi ); dco_ntr::loop_var<FP> zcorr(0);
DCO_CKP_CALL(FP, getVol(Si, ns, knots, coeffs, extrap, sigma));
DCO_FOR(FP, j, 0, dim) {
zcorr += d_cholCorr[j] * id_Z[p+j*stride];

}
DCO_ENDFOR
const auto inc = (rd-rf-0.5*sigma*sigma)*dt + sqrtdt*sigma*zcorr;
id_logS[p] = logSi + inc;

}
DCO_FOR_STORE_CKP(p) {
// In forward run, store locvol checkpoint
id_locVolCKP[p] = dco_ntr::value(sigma);

} DCO_FOR_LOAD_CKP(p) {
// In adjoint run, load locvol checkpoint
sigma = id_locVolCKP[p];

}
DCO_ENDFOR // End path loop

}
DCO_ENDFOR // End time step loop

}

Algorithmic Differentiation: Handwritten vs Runtime

• Handwritten adjoint : most efficient, but laborious to write, error-
prone and have two sets of source to be kept in sync.

• Runtime : primal code executed through a tool which builds execu-
tion graph (tape) at runtime and computes adjoint from this. Very
flexible, only one source, but has runtime overheads and potentially
massive memory use.

Runtime AD tools such as dco/c++ are most popular due to flexibil-
ity and productivity. Memory use of dco/c++ can be constrained as
much as desired, and runtime overheads are small.

Runtime AD Tools are not Always Appropriate
Sometimes handwritten adjoints are preferable, or are the only option:

• Accelerators such as GPUs: thousands of threads, limited RAM and
branching control logic makes taping hard or infeasible

• “Static” library routines (e.g. spline evaluation) which don’t change
and are heavily used

• Performance-critical kernels, e.g. Monte Carlo

• Applications where available memory is constrained

Compile-time Adjoints Through Operator Overloading
With C++11 it is possible to write a meta-program based overload-
ing tool which uses the platform C++ compiler (gcc, cl, nvcc, etc.) to
instantiate an adjoint code at compile time. If the tool is designed care-
fully, and the platform compiler is good enough, then the resulting
code can be optimized to the same level as a handwritten adjoint. We
implemented this in a new dco/c++ type called dco ntr.

Multi-dimensional Local Volatility Test Code
We applied the tool to an FX basket code: 10 factor local volatility
model driving a basket of 10 FX rates, local volatility surfaces repre-
sented by 1D splines. The model has ≈ 450 inputs, mainly the market
observed implied volatility quotes. Price and full gradient are com-
puted on GPU or CPU (serial only).

Adjacent code snippets show the Monte Carlo kernel. Minor details are
omitted for brevity. The function compute is called from CPU code
or GPU kernels and instantiated with dco ntr scalar and array types
or normal (float, float*) types. It stores Monte Carlo paths in
d logS and checkpoints local volatilities in d locVolCKPwhich are
used to speed up the adjoint run.

Handwritten Adjoints by Operator Overloading
C++11 meta-program creates adjoints of arbitrary procedural codes
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