
NAG Fortran Compiler Release 7.1 Release Note

December 21, 2022

1 Introduction

Release 7.1 of the NAG Fortran Compiler is a major update.

Customers upgrading from a previous release of the NAG Fortran Compiler will need a new licence key for this release.

See KLICENCE.txt for more information about Kusari Licence Management.

2 Release Overview

Release 7.1 of the NAG Fortran Compiler supports all of Fortran 2008, in particular:

• A reference to a function that returns a data pointer can be used as a variable in many contexts, including on
the left-hand side of an assignment statement.

• Other minor features, such as pointer target initialisation, allowing allocatable components to have recursive or
mutually recursive type, and functions returning procedure pointers, are now supported.

Substantial additional support for Fortran 2018 has been added, in particular:

• With the addition of intrinsic “collective” subroutines (CO SUM et al), all of the coarray parallel programming
features of Fortran 2018 are now supported.

• Partial support for the advanced C interoperability has been added. Specifically, assumed-rank and assumed-type
arguments, along with C descriptors, are supported.

• Use of assumed-rank arguments directly in Fortran (rather than C) is provided by the RANK intrinsic function
and the SELECT RANK construct.

• A number of minor features, such as allowing an optional dummy argument to be used as the DIM argument of
an intrinsic array reduction function (such as SUM), have been added.

Support for OpenMP programming has been improved by enabling undefined variable checking in OpenMP programs.
Additionally, some minor features from newer OpenMP specifications have also been added.

Finally, there is also additional error checking available, and the bundled tools have some additional capabilities.

3 Compatibility

3.1 Compatibility with Release 7.0

Release 7.1 is compatible with Release 7.0, except that files compiled with the −C=calls option will need to be
recompiled if they contain a procedure with a procedure pointer argument, or a reference to such a procedure.

3.2 Compatibility with Release 6.2

On MacOS the 32-bit ABI mode accessible via −abi=32 has been removed; consequently only 64-bit compilation is
supported and the −abi= switch has been removed entirely.

Other than this, Release 7.1 is fully compatible with Release 6.2 except when coarrays are used, or when the −C=calls
option is used for a subroutine that has an alternate return. Any program that uses these features will need to be
recompiled.

1

3.3 Compatibility with Release 6.1

Programs which use features from HPF (High Performance Fortran), for example the ILEN intrinsic function or the
HPF LIBRARY module, are no longer supported.

The previously deprecated −abi=64 option on Linux x86-64 has been withdrawn. This option provided an ABI with
64-bit pointers but 32-bit object sizes and subscript arithmetic, and was only present for compatibility with Release
5.1 and earlier.

With the exception of HPF support and the deprecated option removal, Release 7.1 of the NAG Fortran Compiler is
fully compatible with Release 6.1.

3.4 Compatibility with Release 6.0

With the exception of HPF support and the deprecated option removal, Release 7.1 of the NAG Fortran Compiler is
compatible with Release 6.0 except that programs that use allocatable arrays of “Parameterised Derived Type” will
need to be recompiled (this only affects module variables and dummy arguments).

3.5 Compatibility with Releases 5.3.1, 5.3 and 5.2

With the exception of HPF support and the deprecated option removal, Release 7.1 of the NAG Fortran Compiler is
fully compatible with Release 5.3.1. It is also fully compatible with Releases 5.3 and 5.2, except that on Windows,
modules or procedures whose names begin with a dollar sign ($) need to be recompiled.

For a program that uses the new “Parameterised Derived Types” feature, it is strongly recommended that all parts
of the program that may allocate, deallocate, initialise or copy a polymorphic variable whose dynamic type might be
a parameterised derived type, should be compiled with Release 7.1.

3.6 Compatibility with Release 5.1

Release 7.1 of the NAG Fortran Compiler is compatible with NAGWare f95 Release 5.1 except that:

• programs that use features from HPF are not supported;

• programs or libraries that use the CLASS keyword, or which contain types that will be extended, need to be
recompiled;

• 64-bit programs and libraries compiled with Release 5.1 on Linux x86-64 (product NPL6A51NA) are binary
incompatible, and need to be recompiled.

4 New Fortran 2008 Features

• An allocatable component can forward-reference a type, for example:

Type t2

Type(t),Pointer :: p

Type(t),Allocatable :: a

End Type

Type t

Integer c

End Type

An allocatable component can also be of recursive type, or two types can be mutually recursive. For example,

Type t

Integer v

Type(t),Allocatable :: a

End Type

2

This allows lists and trees to be built using allocatable components. Building or traversing such data structures
will usually require recursive procedure calls, as there is no allocatable analogue of pointer assignment.

No matter how deeply nested such recursive data structures become, they can never be circular (again, because
there is no pointer assignment). As usual, deallocating the top object of such a structure will recursively
deallocate all its allocatable components.

• A dummy argument can be used in a specification expression in an elemental subprogram, as long as it is not
used to specify a type parameter (such as character length) of a function result. For type parameters of function
results, they remain limited to appearing in specification enquiries (such as LEN) when the enquiry is not about
a deferred characteristic.

For example, in

Elemental Subroutine s(x,n,y)

Real,Intent(In) :: x

Integer,Intent(In) :: n

Real,Intent(Out) :: y

Real temp(n)

...

the dummy argument N can be used to declare the local array TEMP.

• Pointers and pointer components can be initialised to point to a target. The target must be valid for that pointer
(e.g. same type, rank, etc.). The main cases are:

Named pointer initialisation
For data pointers, the target must have the SAVE attribute (variables in modules and the main program
have this attribute implicitly). For procedure pointers, the target must be a module procedure or
external procedure, not a dummy procedure, internal procedure, or statement function.

For example,

Module m

Real,Target :: x

Real,Pointer :: p => x

End Module

Program test

Use m

p = 3

Print *,x ! Will print the value 3.0

End Program

Component default initialisation
Pointer components can be default-initialised to point to a target. The requirements on the target
are the same as for named pointer initialisation.

For example,

Module m

Real,Target :: x

Type t

Real,Pointer :: p => x

End Type

End Module

Program test

Use m

Type(t) y

y%p = 3

Print *,x ! Will print the value 3.0

End Program

Component initialisation with structure constructors
A structure constructor in a constant expression can specify a target for any pointer component. The
requirements on the target are the same as for named pointer initialisation.

For example,

3

Module m

Real,Target :: x

Type t

Real,Pointer :: p

End Type

End Module

Program test

Use m

Type(t) :: y = t(x)

y%p = 3

Print *,x ! Will print the value 3.0

End Program

• A reference to a function that returns a pointer can be used as a variable in many contexts. In particular, it can
be used as the variable in an assignment statement, as the actual argument corresponding to an INTENT(OUT) or
INTENT(INOUT) dummy argument, and as the selector in an ASSOCIATE or SELECT TYPE construct that modifies
the associate-name.

For example, with this module,

Module m

Real,Target,Save :: table(100) = 0

Contains

Function f(n)

Integer,Intent(In) :: n

Real,Pointer :: f

f => table(Min(Max(1,n),Size(table)))

End Function

End Module

the program below will print “-1.23E+02”.

Program example

Use m

f(13) = -123

Print 1,f(13)

1 Format(ES10.3)

End Program

It should be noted that the syntax of a statement function definition is identical to part of the syntax of a
pointer function reference as a variable; the existence of a pointer-valued function that is accessible in the scope
determines which of these it is. This may lead to confusing error messages in some situations.

With the above module, this program demonstrates the use of the feature with an ASSOCIATE construct.

Program assoc_eg

Use m

Associate(x=>f(3), y=>f(4))

x = 0.5

y = 3/x

End Associate

Print 1,table(3:4) ! Will print " 5.00E-01 6.00E+00"

1 Format(2ES10.2)

End Program

Finally, here is an example using argument passing.

Program argument_eg

Use m

Call set(f(7))

Print 1,table(7) ! Will print "1.41421"

4

1 Format(F7.5)

Contains

Subroutine set(x)

Real,Intent(Out) :: x

x = Sqrt(2.0)

End Subroutine

End Program

Other contexts where a reference to a pointer-valued function may be used instead of a variable designator
include:

– as an internal file specifier in a WRITE statement (the function must return a pointer to a character string
or array for this);

– as an input-item in a READ statement;

– as a STAT= or ERRMSG= variable in an ALLOCATE or DEALLOCATE statement, or in an image control statement
such as EVENT WAIT;

– as the team variable in a FORM TEAM statement.

• The result of a function can be a procedure pointer. For example,

Module ppfun

Private

Abstract Interface

Subroutine charsub(string)

Character(*),Intent(In) :: string

End Subroutine

End Interface

Public charsub,hello_goodbye

Contains

Subroutine hello(string)

Character(*),Intent(In) :: string

Print *,’Hello: ’,string

End Subroutine

Subroutine bye(string)

Character(*),Intent(In) :: string

Print *,’Goodbye: ’,string

Stop

End Subroutine

Function hello_goodbye(flag)

Logical,Intent(In) :: flag

Procedure(hello),Pointer :: hello_goodbye

If (flag) Then

hello_goodbye => hello

Else

hello_goodbye => bye

End If

End Function

End Module

Program example

Use ppfun

Procedure(charsub),Pointer :: pp

pp => hello_goodbye(.True.)

Call pp(’One’)

pp => hello_goodbye(.False.)

Call pp(’Two’)

End Program

The function hello goodbye in module ppfun returns a pointer to a procedure, which needs to be pointer-
assigned to a procedure pointer to be invoked. When executed, this example will print

5

Hello: One

Goodbye: Two

Use of this feature is not recommended, as it blurs the lines between data objects and procedures; this may lead
to confusion or misunderstandings during code maintenance. The feature provides no functionality that was not
already provided by procedure pointer components.

5 New Fortran 2018 Features

• The intrinsic subroutines CO BROADCAST, CO MAX, CO MIN, CO REDUCE and CO SUM perform collective operations.
These are for coarray parallelism: they compute values across all images in the current team, without explicit
synchronisation.

All of these subroutines have optional STAT and ERRMSG arguments. On successful execution, the STAT argument
is assigned the value zero and the ERRMSG argument is left unchanged. If an error occurs, a positive value is
assigned to STAT and an explanatory message is assigned to ERRMSG. Only the errors STAT FAILED IMAGE and
STAT STOPPED IMAGE are likely to be able to be caught in this way. Because there is not full synchronisation (see
below), different images may receive different errors, or none at all. If an error occurs and STAT is not present,
execution is terminated. Note that if the actual arguments for STAT or ERRMSG are optional dummy arguments,
they must be present on all images or absent on all images.

A reference (CALL) to one of these subroutines is not an image control statement, does not end the current
segment, and does not imply synchronisation (though some partial synchronisation will occur during the com-
putation). However, such calls are only permitted where an image control statement is permitted.

Each image in a team must execute the same sequence of CALL statements to collective subroutines as the other
images in the team. There must be no synchronisation between the images at the time of the call; the invocations
must come from unordered segments.

All collective subroutines have the first argument “A”, which is INTENT(INOUT), and must not be a coindexed
object. This argument contains the data for the calculation, and must have the same type, type parameters,
and shape on all images in the current team. If it is a coarray that is a dummy argument, it must have the same
ultimate argument on all images.

SUBROUTINE CO BROADCAST (A, SOURCE IMAGE [, STAT, ERRMSG])

A : variable of any type; it must not be a coindexed object, and must have the same type, type
parameters and shape on all images in the current team; if A is a coarray that is a dummy argument,
it must have the same ultimate argument on each image;

SOURCE IMAGE : integer scalar, in the range one to NUM IMAGES(), this argument must have the same
value on all images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

The value of argument A on image SOURCE IMAGE is assigned to the argument A on all the other images.

SUBROUTINE CO MAX (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Character; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

6

This subroutine computes the maximum value of A across all images; if A is an array, the value is
computed elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image,
otherwise it is assigned to argument A on all images.

SUBROUTINE CO MIN (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Character; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes the minimum value of A across all images; if A is an array, the value is
computed elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image,
otherwise it is assigned to argument A on all images.

SUBROUTINE CO REDUCE (A, OPERATION [, RESULT IMAGE, STAT, ERRMSG])

A: non-polymorphic variable of any type; it must not be a coindexed object, and must have the same
type, type parameters and shape on all images in the current team; if A is a coarray that is a dummy
argument, it must have the same ultimate argument on each image;

OPERATION : pure function with exactly two arguments; the dummy arguments of OPERATION must
be non-allocatable, non-optional, non-pointer, non-polymorphic dummy variables, and each argument
and the result of the function must be scalar with the same type and type parameters as A;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes an arbitrary reduction of A across all images; if A is an array, the value is
computed elementally. The reduction is computed starting with the set of corresponding values of A
on all images; this is an iterative process, taking two values from the set and converting them to a
single value by applying the OPERATION function; the process continues until the set contains only a
single value — that value is the result. If RESULT IMAGE is present, the result is assigned to argument
A on that image, otherwise it is assigned to argument A on all images.

SUBROUTINE CO SUM (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Complex; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes the sum of A across all images; if A is an array, the value is computed
elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image, otherwise
it is assigned to argument A on all images.

7

• The DIM argument to the intrinsic functions ALL, ANY, FINDLOC, IALL, IANY, IPARITY, MAXLOC, MAXVAL, MINLOC,
MINVAL, NORM2, PARITY, PRODUCT and SUM can be an optional dummy argument, as long as it is present at
execution time. For example,

Subroutine sub(x,n)

Real,Intent(In) :: x(:,:,:)

Integer,Intent(In),Optional :: n

If (Present(n)) Then

Print *,Norm2(x,n) ! Rank two array result.

Else

Print *,Norm2(x) ! Scalar result.

End If

End Subroutine

• The SIZE= specifier can be used in a READ statement without ADVANCE=’NO’, that is, in a READ statement with
no ADVANCE= specifier, or one with an explicit ADVANCE=’YES’. For example,

Character(65536) buf

Integer nc

Read(*,’(A)’,Size=nc) buf

Print *,’The number of characters on that line was’,nc

Note that SIZE= is not permitted with list-directed or namelist formatting; that would be pointless, as there are
no edit descriptors with such formatting and thus no characters to be counted by SIZE=.

• Specific intrinsic functions are reported as obsolescent with the −f2018 option. In the case of a function that is
both specific and generic, e.g. SQRT, only obsolescent usage is reported, e.g. passing as an actual argument, use
as a procedure interface, or being the target of a procedure pointer assignment.

For example, in

Program obsolete_cos_usage

Real x

Intrinsic cos

Procedure(cos),Pointer :: pp ! Obsolescent

x = 1.5

pp => cos ! Obsolescent

Call other_procedure(cos) ! Obsolescent

Print *,cos(x),pp(x)

End Program

Subroutine other_procedure(f)

Real,External :: f

Print *,f(1.5)

End Subroutine

only the three lines marked with the comment will produce warning messages.

• Assumed-rank dummy arguments accept actual arguments of any rank; they assume the rank from the actual ar-
gument. This rank may be zero; that is, the actual argument may be scalar. Furthermore, assumed-rank dummy
arguments may have the ALLOCATABLE or POINTER attribute, and thus accept allocatable/pointer variables of
any rank.

The syntax is as follows:

Real,Dimension(..) :: a, b

Integer :: c(..)

That declares three variables (which must be dummy arguments) to be assumed-rank.

The use of assumed-rank dummy arguments within Fortran is extremely limited; basically, the intrinsic inquiry
functions can be used, and there is a SELECT RANK construct, but other than that they may only appear as
actual arguments to other procedures where they correspond to another assumed-rank argument.

8

The main use of assumed rank is for advanced C interoperability. An assumed-rank argument is passed by
reference as a “C descriptor”; it is then up to the C routine to decode what that means. The C descriptor, along
with several utility functions for manipulating it, is defined by the source file ISO Fortran binding.h; this can
be found in the compiler’s library directory (on Linux this is usually /usr/local/lib/NAG Fortran, but that
can be changed at installation time).

This topic is highly complex, and beyond the scope of a Release Note. The reader should direct their attention
to the Fortran 2018 standard, or to a good textbook such as “Modern Fortran Explained” by Metcalf, Reid and
Cohen.

Here is an extremely simple example:

Program assumed_rank_example

Real x(1,2),y(3,4,5,6,7)

Call showrank(1.5)

Call showrank(x)

Call showrank(y)

Contains

Subroutine showrank(a)

Real,Intent(In) :: a(..)

Print *,’Rank is’,Rank(a)

End Subroutine

End Program

That will produce the output

Rank is 0

Rank is 2

Rank is 5

• The SELECT RANK construct facilitates use of assumed rank objects in Fortran. It has the syntax

[construct-name] SELECT RANK ([assoc_name =>] assumed-rank-variable-name)

[rank-stmt

block]...

END SELECT [construct-name]

where rank-stmt is one of:

RANK (scalar-int-constant-expression) [construct-name]

RANK (*) [construct-name]

RANK DEFAULT [construct-name]

In any particular SELECT RANK construct, there must not be more than one RANK DEFAULT statement, or more
than one RANK (*) statement, or more than RANK (integer) with the same value integer expression. If the
assumed-rank variable has the ALLOCATABLE or POINTER attribute, the RANK (*) statement is not permitted.

The block following a RANK statement with an integer constant expression is executed if the assumed-rank variable
is associated with a non-assumed-rank actual argument that has that rank, and is not an assumed-size array.
Within the block it acts as if it were an assumed-shape array with that rank.

The block following a RANK (*) is executed if the ultimate argument is an assumed-size array. Within the block
it acts as if it were declared with bounds ‘(1:*)’; if different bounds or rank are desired, this can be passed to
another procedure using sequence association.

The block following a RANK DEFAULT statement is executed if no other block is selected. Within its block, it is
still an assumed-rank variable, i.e. there is no change.

Here is a simple example of the SELECT RANK construct.

Program select_rank_example

Integer :: a = 123, b(1,2) = Reshape([10,20], [1,2]), c(1,3,1) = 777, d(1,1,1,1,1)

Call show(a)

Call show(b)

9

Call show(c)

Call show(d)

Contains

Subroutine show(x)

Integer x(..)

Select Rank(x)

Rank (0)

Print 1,’scalar’,x

Rank (1)

Print 1,’vector’,x

Rank (2)

Print 1,’matrix’,x

Rank (3)

Print 1,’3D array’,x

Rank Default

Print *,’Rank’,Rank(x),’not supported’

End Select

1 Format(1x,a,*(1x,i0,:))

End Subroutine

End Program

This will produce the output

scalar 123

matrix 10 20

3D array 777 777 777

Rank 5 not supported

• The TYPE(*) type specifier can be used to declare scalar, assumed-size, and assumed-rank dummy arguments.
Such an argument is called assumed-type; the corresponding actual argument may be of any type. It must not
have the ALLOCATABLE, CODIMENSION, INTENT (OUT), POINTER, or VALUE attribute.

An assumed-type variable is extremely limited in the ways it can be used directly in Fortran:

– it may be passed as an actual argument to another assumed-type dummy argument;

– it may appear as the first argument to the intrinsic functions IS CONTIGUOUS, LBOUND, PRESENT, SHAPE,
SIZE, or UBOUND;

– it may be used as the argument of the function C LOC (in the ISO C BINDING intrinsic module}.

Other than these contexts, it cannot be used in any other way at all. Note that if it is an array, you cannot
subscript it or create an array section from it.

This is mostly useful for interoperating with C programs. A TYPE(*) dummy argument interoperates with a C
argument declared as “void *”. There is no difference between scalar and assumed-size on the C side, but on
the Fortran side, if the dummy argument is scalar the actual argument must also be scalar, and if the dummy
argument is an array, the actual argument must also be an array.

Because an actual argument can be passed directly to a TYPE(*) dummy, the C LOC function is not required,
and so there is no need for the TARGET attribute on the actual argument.

For example,

Program type_star_example

Interface

Function checksum(scalar,size) Bind(C)

Use Iso_C_Binding

Type(*) scalar

Integer(C_int),Value :: size

Integer(C_int) checksum

End Function

End Interface

Type myvec3

10

Double Precision v(3)

End Type

Type(myvec3) x

Call Random_Number(x%v)

Print *,checksum(x,Storage_Size(x)/8)

End Program

int checksum(void *a,int n)

{

int i;

int res = 0;

unsigned char *p = a;

for (i=0; i<n; i++) res = 0x3fffffff&((res<<1) + p[i]);

return res;

}

• A BIND(C) procedure can have optional arguments. Such arguments cannot also have the VALUE attribute.

An absent optional argument of a BIND(C) procedure is indicated by passing a null pointer argument.

For example,

Program optional_example

Use Iso_C_Binding

Interface

Function f(a,b) Bind(C)

Import

Integer(C_int),Intent(In) :: a

Integer(C_int),Intent(In),Optional :: b

Integer(C_int) f

End Function

End Interface

Integer(C_int) x,y

x = f(3,14)

y = f(23)

Print *,x,y

End Program

int f(int *arg1,int *arg2)

{

int res = *arg1;

if (arg2) res += *arg2;

return res;

}

The second reference to f is missing the optional argument b, so a null pointer will be passed for it. This will
result in the output:

17 23

• The intrinsic inquiry function RANK returns the dimensionality of its argument. It has the following syntax:

RANK (A)

A : data object of any type:

Result : scalar Integer of default kind.

The result is the rank of A, that is, zero for scalar A, one if A is a one-dimensional array, and so on.

This function can be used in a constant expression except when A is an assumed-rank variable.

11

• The intrinsic function REDUCE performs user-defined array reductions. It has the following syntax:

REDUCE (ARRAY, OPERATION [, MASK, IDENTITY, ORDERED]) or

REDUCE (ARRAY, OPERATION DIM [, MASK, IDENTITY, ORDERED])

ARRAY : array of any type;

OPERATION : pure function with two arguments, each argument being scalar, non-allocatable, non-
pointer, non-polymorphic non-optional variables with the same declared type and type parameters as
ARRAY; if one argument has the ASYNCHRONOUS, TARGET or VALUE attribute, the other must also have
that attribute; the result must be a non-polymorphic scalar variable with the same type and type
parameters as ARRAY;

DIM : scalar Integer in the range 1 to N, where N is the rank of ARRAY;

MASK : type Logical, and either scalar or an array with the same shape as ARRAY;

IDENTITY : scalar with the same declared type and type parameters as ARRAY;

ORDERED : scalar of type Logical;

Result : Same type and type parameters as ARRAY.

The result is ARRAY reduced by the user-supplied OPERATION. If DIM is absent, the whole (masked) ARRAY is
reduced to a scalar result. If DIM is present, the result has rank N -1 and the shape of ARRAY with dimension DIM

removed; each element of the result is the reduction of the masked elements in that dimension.

If exactly one element contributes to a result value, that value is equal to the element; that is, OPERATION is only
invoked when more that one element appears.

If no elements contribute to a result value, the IDENTITY argument must be present, and that value is equal to
IDENTITY.

For example,

Module triplet_m

Type triplet

Integer i,j,k

End Type

Contains

Pure Type(triplet) Function tadd(a,b)

Type(triplet),Intent(In) :: a,b

tadd%i = a%i + b%i

tadd%j = a%j + b%j

tadd%k = a%k + b%k

End Function

End Module

Program reduce_example

Use triplet_m

Type(triplet) a(2,3)

a = Reshape([triplet(1,2,3),triplet(1,2,4), &

triplet(2,2,5),triplet(2,2,6), &

triplet(3,2,7),triplet(3,2,8)], [2,3])

Print 1, Reduce(a,tadd)

Print 1, Reduce(a,tadd,1)

Print 1, Reduce(a,tadd,a%i/=2)

Print 1, Reduce(Array=a,Dim=2,Operation=tadd)

Print 1, Reduce(a, Mask=a%i/=2, Dim=1, Operation=tadd, Identity=triplet(0,0,0))

1 Format(1x,6(’triplet(’,I0,’,’,I0,’,’,I0,’)’,:,’; ’))

End Program

12

This will produce the output:

triplet(12,12,33)

triplet(2,4,7); triplet(4,4,11); triplet(6,4,15)

triplet(8,8,22)

triplet(6,6,15); triplet(6,6,18)

triplet(2,4,7); triplet(0,0,0); triplet(6,4,15)

• Generic resolution can use the number of procedure arguments; that is, if one procedure has more non-optional
procedure arguments than the other has optional plus non-optional procedure arguments, the procedures are
considered to be unambiguous.

For example,

Module npa_example

Interface g

Module Procedure s1,s2

End Interface

Contains

Subroutine s1(a)

External a

Call a

End Subroutine

Subroutine s2(b,a)

External b,a

Call b

Call a

End Subroutine

End Module

This example does not conform to the Fortran 2008 rules for unambiguous generic procedures, because the
argument A distinguishes by position but not by keyword, the argument B distinguish by keyword but not by
position, and the positional disambiguator (A) does not appear earlier in the list than the keyword disambiguator
(B).

6 Additional OpenMP support

• Undefined variable detection, with the −C=undefined option, is supported. For example, executing the program:

Program bad

Use omp_lib

Real x,y(10)

x = 3

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(y)

Do i=1,Size(y)

y(omp_get_thread_num() + 1) = x * omp_get_thread_num()

End Do

!$OMP END PARALLEL DO

Print *,y

End Program

produces the output

Runtime Error: bad.f90, line 7: Reference to undefined variable X

Program terminated by fatal error

• The OpenMP 4.0 CANCEL and CANCELLATION POINT directives are supported, along with the OMP CANCELLATION

environment variable and the OMP GET CANCELLATION function. Also, the OpenMP 5.0 CANCEL: keyword on the
IF clause of CANCEL is supported.

The syntax of the CANCEL directive is:

13

!$OMP CANCEL construct-type [[,] IF ([CANCEL:] scalar-logical-expr)]

where construct-type is one of the keywords PARALLEL, DO, SECTIONS or TASKGROUP. The directive must be closely
nested in an OpenMP construct of the type specified, except for TASKGROUP where it must be closely nested in
an OpenMP TASK construct. In the case of SECTIONS, the construct must not have a NOWAIT clause. In the case
of DO, the construct must not have a NOWAIT clause or an ORDERED clause.

Executing a CANCEL directive evaluates the IF clause if present, and if the IF clause is not present, or evaluates
to true, and cancellation is enabled, the construct is cancelled. If cancelled, the executing thread jumps
immediately to the end of the construct.

The syntax of the CANCELLATION POINT directive is:

!$OMP CANCELLATION POINT construct-type

where construct-type is the same as for the CANCEL directive. As for CANCEL, the CANCELLATION POINT directive
must be closely nested in the appropriate OpenMP construct. That construct should also have a CANCEL directive,
otherwise there can never be any effect (other than waste CPU time) from the CANCELLATION POINT directive.

Executing a CANCELLATION POINT directive will transfer control to the end of the construct if the construct has
been cancelled; otherwise, there is no effect.

Apart from the CANCELLATION POINT directive, there is also a cancellation point at a CANCEL directive (even
if it has an IF clause that evaluates to false), a BARRIER directive, or an implied barrier (e.g. at the end of a
contained construct such as END SINGLE without NOWAIT).

After a construct has been cancelled, any barrier that is executed within the region must be closely nested inside
the cancelled directive (i.e. not in a procedure called from the construct), otherwise there will either be a runtime
error (with the NAG compiler) or an infinite hang (as the cancelling thread will never reach the barrier).

Cancellation is enabled if the OMP CANCELLATION environment variable has the value ‘TRUE’ (not case-sensitive),
and is disabled if the variable has the value ‘FALSE’. If the variable does not exist, the setting is compiler-
dependent; with the NAG Fortran Compiler, the default is FALSE.

The OMP GET CANCELLATION function has the interface

LOGICAL FUNCTION OMP_GET_CANCELLATION()

END FUNCTION

It returns .TRUE. if cancellation is enabled, and .FALSE. if disabled.

Here is a simple example of cancellation.

Program example

Real a(20000,4),b(4)

Logical ok

Call Random_Number(a)

a = a*10

Call normalise(a,b,ok)

Print 1,ok,b

If (Any(a>2)) Print *,’Cancellation occurred’

Call Random_Number(a)

a = a*10

a(:,2) = -a(:,2)

Call normalise(a,b,ok)

Print 1,ok,b

1 Format(1X,’Succeeded = ’,L1,’, vmax =’,4F8.4)

If (Any(a>2)) Print *,’Cancellation occurred’

Contains

Subroutine normalise(x,y,succeeded)

Use omp_lib

Real,Intent(InOut) :: x(:,:)

Real,Intent(Out) :: y(Size(x,2))

Logical,Intent(Out) :: succeeded

Real z

14

Integer me,i

succeeded = .True.

!$OMP PARALLEL PRIVATE(me,i,z) SHARED(x,y) NUM_THREADS(Size(x,2))

z = 0

me = omp_get_thread_num() + 1

Do i=1,Size(x,1)

If (x(i,me)>z) z = x(i,me)

End Do

y(me) = z

!$OMP CANCEL PARALLEL, IF (z==0)

z = 2.0/z

Do i=1,Size(x,1)

x(i,me) = x(i,me)*z

If (Iand(i,4095)==0) Then

! Every 4096 elements, check to see if the whole thing was cancelled already.

!$OMP CANCELLATION POINT PARALLEL

End If

End Do

!$OMP END PARALLEL

succeeded = All(y/=0)

End Subroutine

End Program

The output from this example could look something like

Succeeded = T, vmax = 9.9993 9.9997 9.9998 9.9974

Succeeded = F, vmax = 9.9999 0.0000 9.9996 9.9998

Cancellation occurred

• The OpenMP 5.1 MASKED construct is supported. This has the form:

!$OMP MASKED [FILTER(scalar-integer-expression)]

structured-block

!$OMP END MASKED

A thread executes the structured-block if and only if the scalar-integer-expression evaluates equal to the thread
number. Thread numbers start at zero, which is the number of the primary thread of a PARALLEL region. If the
FILTER clause is not present, it acts as if it were present as FILTER(0); that is, only the primary thread will
execute the structured block.

This is exactly equivalent to

IF (omp_get_thread_num()==scalar-integer-expression) THEN

structured-block

END IF

Note that the integer expression need not have the same value on each thread, and if that is the case, more than
one thread may execute the masked region concurrently — there is no locking or synchronisation implied by this
construct. That means that if any variables that are not local to the thread are updated, the necessary locking
will need to be explicitly inserted by the programmer.

7 Additional error checking

• Multiple occurrences of the same variable in an ALLOCATE or DEALLOCATE statement is now detected as an error.

• Checking of type-bound procedure overriding and global consistency now reports differences in dummy argument
shape.

• Integer arguments to SYSTEM CLOCK that are 8-bit or 16-bit are now detected as errors, as they are too small to
receive the values.

15

• Warnings are produced for argument inconsistencies for SYSTEM CLOCK when

– there are no arguments;

– integer arguments have different kind (this will be invalid in Fortran 202x);

– mixed integer and real arguments;

– integer arguments are not 64-bit integer as recommended by Fortran 202x.

• An error is produced for use of a NAMELIST with a variable that has an allocatable, pointer, or inaccessible
component, if the variable will not be processed by defined input/output.

• A warning is produced if a format specification that is a constant character string has non-blank characters after
the closing parenthesis, for example,

Print ’(1X,I0) whatever’,13

will produce a warning like

Questionable: file.f90, line 2: Extraneous nonblank characters "whatever" after right

parenthesis in character string format specification

• A CONTINUE statement does not have any effect, but may be a branch target statement, or the end of a DO loop, if
it has a label. A CONTINUE statement with no label however, cannot be of use in any way. Therefore we produce
a Note level warning. If the CONTINUE statement is within a DO loop, this is upgraded to Questionable, as a C
programmer might think it has the effect of the CYCLE statement (as it does in C). For example,

Program continues

Continue

Do i=1,10

Print *,i**2

Continue

End Do

End Program

will produce the warnings

Note: file.f90, line 2: CONTINUE statement with no label

Questionable: file.f90, line 5: CONTINUE statement with no label inside DO loop - did you

mean CYCLE?

• When allocating coarrays that are of parameterised derived type, a difference in the length type parameter values
on different images is now detected as a runtime error. For example,

Allocate(w[*],Mold=z)

where Z is a dummy argument with different type parameter values on different images, may produce a runtime
error like

Runtime Error: pco068.f90, line 17: Type parameter K1 in coarray allocation has value 1 on

image one but 13 on image 2

• Empty SELECT CASE and SELECT TYPE constructs are reported as Questionable, as they do not do anything
other than evaluate the selector.

For example, if the file sub.f90 contains:

Subroutine sub(x,n)

Class(*) x

Integer n

Select Case (n)

End Select

Select Type (x)

End Select

End Subroutine

16

the following warnings will be produced:

Questionable: sub.f90, line 4: Empty SELECT CASE construct

Questionable: sub.f90, line 6: Empty SELECT TYPE construct

Also, evaluation of the selector may not happen if optimisation (the −O option) is used.

• The −C=intovf option will now detect integer overflow in the SHAPE and SIZE intrinsic functions. For example,

Program shape_overflow_example

Real a(1,123456,3)

Call sub(a)

Contains

Subroutine sub(x)

Use Iso_Fortran_Env

Real,Intent(In) :: x(:,:,:)

Integer(int16) sh(3)

sh = Shape(x,int16)

Print *,sh

End Subroutine

End Program

If compiled with −C=intovf , instead of producing the nonsense results

1 -7616 3

it will produce the runtime error message:

Runtime Error: shape_overflow_example.f90, line 9: INTEGER(int16) overflow for intrinsic

SHAPE, true result value is 123456

• The −C=calls option now treats dummy arguments that are procedure pointers as being different from functions
returning data pointers, and from functions returning procedure pointers (at any level of procedure call). These
errors can only arise if a procedure is invoked with an incorrect INTERFACE block specification.

For example, if the procedure

Subroutine sub(f,x)

Interface

Function f(y)

Real,Pointer :: f

End Function

End Interface

Real,Intent(In) :: x

Real,Pointer :: p

p => f(x)

Print *,Associated(p)

End Subroutine

is invoked (via an incorrect interface block) as follows

Program bad

Interface

Subroutine sub(f,x)

Real,External,Pointer :: f

Real,Intent(In) :: x

End Subroutine

End Interface

Real,External,Pointer :: pp

Intrinsic sqrt

pp => sqrt

Call sub(pp,1.5)

End Program

17

the −C=calls option (with −gline to get a traceback) will produce the runtime error message

Runtime Error: sub.f90, line 1: Incorrect interface block for SUB - Dummy argument F

(number 1) is not a procedure pointer

Program terminated by fatal error

sub.f90, line 1: Error occurred in SUB

bad.f90, line 11: Called by BAD

instead of a segmentation fault.

8 Miscellaneous enhancements

• The polish options −idcase= and −kwcase= now have an extra possibility: ‘Camel Case’. This differs from
‘Capitalised’ only in that a letter after an underscore will also be uppercase, not just the initial letter. For
−kwcase=Camel Case, the keywords affected are Non Intrinsic, Non Overridable and Non Recursive, and
the OpenMP keyword Num Threads. Note that case specifications are not case-sensitive, and can be abbreviated
to the first letter, except for Camel Case which can be abbreviated to ‘cam’.

• The polish option −idcase= now has an extra possibility: ‘Asis’. This preserves the case of all identifiers,
including user-defined operators (but not intrinsic operators), as they appear in the input. For example, the
input “eX = Ex + 1” will produce exactly the same inconsistent casing in the output. This option is not available
with enhanced polish or other tools.

• The enhanced polish option −case: allows different case settings for different kinds of name. The colon is
followed by a comma-separated list of “kind=case”, where case is a case specification (UPPERCASE, lowercase,
Capitalised, Camel Case), and kind is one of the categories listed below:

comp Component
constr Construct name
intr Intrinsic procedure
param PARAMETER
proc Procedure
tbp Type-bound procedure

tparam Derived type parameter
type Derived type
var Variable

For example, −case:var=lower,proc=u specifies lowercase for variables and UPPERCASE for procedures. If
there is no setting for a particular kind of name, it will fall back to an appropriate category; param, type, comp,
tparam and proc all fall back to var, intr will fall back to proc, and tbp will fall back to comp or proc. If there
is no rule or fall-back rule, the −idcase= option setting (or default) is used.

• The enhanced polish −casex: specifies exceptions to the case rules. The colon is followed by a comma-separated
list of names in the exact case required. For example, −casex:MaxVal,XYz will result in every occurence of a
name equivalent to maxval or xyz appearing as MaxVal or XYz respectively.

• The −quiet option suppresses the compiler (or tool) banner message, and also the summary line at the end, so
that only diagnostic messages will appear.

• Extension messages now provide information on what kind of extension it is. This is either the edition of
the Fortran standard that added the feature (e.g. “Extension(F2018)”), whether it is a NAG extension
(“Extension(NAG)”), or whether it is an obsolete extension, e.g. to FORTRAN77, that has been superseded by
standard features (“Non-standard(Obsolete)”).

• Informational messages have been split into three levels: Note (highest), Info, and Remark (lowest). By default,
Note messages are produced; this can be suppressed with the −w=note option. The −info option causes both
Info and Remark messages to appear.

18

