
Fortran 2018 Overview

December 21, 2022

1 Introduction

This document describes the new parts of the Fortran 2018 language that are supported by the latest release of the
NAG Fortran Compiler.

The compiler release in which a feature was made available is indicated by square brackets; for example, a feature
marked as ‘[5.3]’ was first available in Release 5.3.

2 Overview of Fortran 2018

The new features of Fortran 2018 that are supported by the NAG Fortran Compiler can be grouped as follows:

• Data declaration

• Data usage and computation

• Input/output

• Execution control

• Intrinsic procedures and modules

• Program units and procedures

• Advanced C interoperability

• Updated IEEE arithmetic capabilities

• Advanced coarray programming

3 Data declaration

• [5.3] If an object is initialised (in a type declaration statement or component definition statement), its array
bounds and character length can be used in its initialisation expression.

• [7.0] The EQUIVALENCE and COMMON statements, and the BLOCK DATA program unit, are considered to be obso-
lescent (and reported as such when the −f2018 option is used).

• [7.1] Assumed-rank dummy arguments accept actual arguments of any rank; they assume the rank from the
actual argument. This rank may be zero; that is, the actual argument may be scalar. Furthermore, assumed-
rank dummy arguments may have the ALLOCATABLE or POINTER attribute, and thus accept allocatable/pointer
variables of any rank.

The syntax is as follows:

Real,Dimension(..) :: a, b

Integer :: c(..)

That declares three variables (which must be dummy arguments) to be assumed-rank.

The use of assumed-rank dummy arguments within Fortran is extremely limited; basically, the intrinsic inquiry
functions can be used, and there is a SELECT RANK construct, but other than that they may only appear as
actual arguments to other procedures where they correspond to another assumed-rank argument.

The main use of assumed rank is for advanced C interoperability (see later section).

Here is an extremely simple example of use within Fortran:

1

Program assumed_rank_example

Real x(1,2),y(3,4,5,6,7)

Call showrank(1.5)

Call showrank(x)

Call showrank(y)

Contains

Subroutine showrank(a)

Real,Intent(In) :: a(..)

Print *,’Rank is’,Rank(a)

End Subroutine

End Program

That will produce the output

Rank is 0

Rank is 2

Rank is 5

• [7.1] The TYPE(*) type specifier can be used to declare scalar, assumed-size, and assumed-rank dummy argu-
ments. Such an argument is called assumed-type; the corresponding actual argument may be of any type. It
must not have the ALLOCATABLE, CODIMENSION, INTENT (OUT), POINTER, or VALUE attribute.

An assumed-type variable is extremely limited in the ways it can be used directly in Fortran:

– it may be passed as an actual argument to another assumed-type dummy argument;

– it may appear as the first argument to the intrinsic functions IS CONTIGUOUS, LBOUND, PRESENT, SHAPE,
SIZE, or UBOUND;

– it may be used as the argument of the function C LOC (in the ISO C BINDING intrinsic module}.

Other than these contexts, it cannot be used in any other way at all. Note that if it is an array, you cannot
subscript it or create an array section from it.

This is mostly useful for interoperating with C programs (see later section). Note that in a non-generic procedure
reference, a scalar argument can be passed to an assumed-type argument that is an assumed-size array.

4 Data usage and computation

• [7.1] The SELECT RANK construct facilitates use of assumed rank objects within Fortran. It has the syntax

[construct-name] SELECT RANK ([assoc_name =>] assumed-rank-variable-name)

[rank-stmt

block]...

END SELECT [construct-name]

where rank-stmt is one of:

RANK (scalar-int-constant-expression) [construct-name]

RANK (*) [construct-name]

RANK DEFAULT [construct-name]

In any particular SELECT RANK construct, there must not be more than one RANK DEFAULT statement, or more
than one RANK (*) statement, or more than RANK (integer) with the same value integer expression. If the
assumed-rank variable has the ALLOCATABLE or POINTER attribute, the RANK (*) statement is not permitted.

The block following a RANK statement with an integer constant expression is executed if the assumed-rank variable
is associated with a non-assumed-rank actual argument that has that rank, and is not an assumed-size array.
Within the block it acts as if it were an assumed-shape array with that rank.

The block following a RANK (*) is executed if the ultimate argument is an assumed-size array. Within the block
it acts as if it were declared with bounds ‘(1:*)’; if different bounds or rank are desired, this can be passed to
another procedure using sequence association.

2

The block following a RANK DEFAULT statement is executed if no other block is selected. Within its block, it is
still an assumed-rank variable, i.e. there is no change.

Here is a simple example of the SELECT RANK construct.

Program select_rank_example

Integer :: a = 123, b(1,2) = Reshape([10,20], [1,2]), c(1,3,1) = 777, d(1,1,1,1,1)

Call show(a)

Call show(b)

Call show(c)

Call show(d)

Contains

Subroutine show(x)

Integer x(..)

Select Rank(x)

Rank (0)

Print 1,’scalar’,x

Rank (1)

Print 1,’vector’,x

Rank (2)

Print 1,’matrix’,x

Rank (3)

Print 1,’3D array’,x

Rank Default

Print *,’Rank’,Rank(x),’not supported’

End Select

1 Format(1x,a,*(1x,i0,:))

End Subroutine

End Program

This will produce the output

scalar 123

matrix 10 20

3D array 777 777 777

Rank 5 not supported

5 Input/output

• [7.0] The RECL= specifier in an INQUIRE statement for an unconnected unit or file now assigns the value −1 to
the variable. For a unit or file connected with ACCESS=’STREAM’, it assigns the value −2 to the variable. Under
previous Fortran standards, the variable became undefined.

• [7.1] The SIZE= specifier can be used in a READ statement without ADVANCE=’NO’, that is, in a READ statement
with no ADVANCE= specifier, or one with an explicit ADVANCE=’YES’. For example,

Character(65536) buf

Integer nc

Read(*,’(A)’,Size=nc) buf

Print *,’The number of characters on that line was’,nc

Note that SIZE= is not permitted with list-directed or namelist formatting; that would be pointless, as there are
no edit descriptors with such formatting and thus no characters to be counted by SIZE=.

6 Execution control

• [6.2] The expression in an ERROR STOP or STOP statement can be non-constant. It is still required to be default
Integer or default Character.

3

• [6.2] The ERROR STOP and STOP statements now have an optional QUIET= specifier, which is preceded by a comma
following the optional stop-code. This takes a Logical expression; if it is true at runtime then the STOP (or ERROR
STOP) does not output any message, and information about any IEEE exceptions that are signalling will be
suppressed. For example,

STOP 13, QUIET = .True.

will not display the usual ‘STOP: 13’, but simply do normal termination, with a process exit status of 13. Note
that this means that the following two statements are equivalent:

STOP, QUIET=.True.

STOP ’message not output’, QUIET=.TRUE.

7 Intrinsic procedures and modules

• [6.2] The intrinsic subroutine MOVE ALLOC now has optional STAT and ERRMSG arguments. The STAT argument
must be of type Integer, with a decimal range of at least four (i.e. not an 8-bit integer); it is assigned the value
zero if the subroutine executes successfully, and a nonzero value otherwise. The ERRMSG argument must be of
type Character with default kind. If STAT is present and assigned a nonzero value, ERRMSG will be assigned an
explanatory message (if it is present); otherwise, ERRMSG will retain its previous value (if any).

For example,

INTEGER,ALLOCATABLE :: x(:),y(:)

INTEGER istat

CHARACTER(80) emsg

...

CALL MOVE_ALLOC(x,y,istat,emsg)

IF (istat/=0) THEN

PRINT *,’Unexpected error in MOVE_ALLOC: ’,TRIM(emsg)

The purpose of these arguments is to catch errors in multiple image coarray allocation/deallocation, such as
STAT STOPPED IMAGE and STAT FAILED IMAGE.

• [7.1] The DIM argument to the intrinsic functions ALL, ANY, FINDLOC, IALL, IANY, IPARITY, MAXLOC, MAXVAL,
MINLOC, MINVAL, NORM2, PARITY, PRODUCT and SUM can be an optional dummy argument, as long as it is present
at execution time. For example,

Subroutine sub(x,n)

Real,Intent(In) :: x(:,:,:)

Integer,Intent(In),Optional :: n

If (Present(n)) Then

Print *,Norm2(x,n) ! Rank two array result.

Else

Print *,Norm2(x) ! Scalar result.

End If

End Subroutine

• [7.1] Specific intrinsic functions are considered to be obsolescent (and reported as such with the −f2018 option).
In the case of a function that is both specific and generic, e.g. SQRT, the obsolescent usage is passing as an actual
argument, use as a procedure interface, or being the target of a procedure pointer assignment.

• [7.1] The intrinsic inquiry function RANK returns the dimensionality of its argument. It has the following syntax:

RANK (A)

A : data object of any type:

4

Result : scalar Integer of default kind.

The result is the rank of A, that is, zero for scalar A, one if A is a one-dimensional array, and so on.

This function can be used in a constant expression except when A is an assumed-rank variable.

• [7.1] The intrinsic function REDUCE performs user-defined array reductions. It has the following syntax:

REDUCE (ARRAY, OPERATION [, MASK, IDENTITY, ORDERED]) or

REDUCE (ARRAY, OPERATION DIM [, MASK, IDENTITY, ORDERED])

ARRAY : array of any type;

OPERATION : pure function with two arguments, each argument being scalar, non-allocatable, non-
pointer, non-polymorphic non-optional variables with the same declared type and type parameters as
ARRAY; if one argument has the ASYNCHRONOUS, TARGET or VALUE attribute, the other must also have
that attribute; the result must be a non-polymorphic scalar variable with the same type and type
parameters as ARRAY;

DIM : scalar Integer in the range 1 to N, where N is the rank of ARRAY;

MASK : type Logical, and either scalar or an array with the same shape as ARRAY;

IDENTITY : scalar with the same declared type and type parameters as ARRAY;

ORDERED : scalar of type Logical;

Result : Same type and type parameters as ARRAY.

The result is ARRAY reduced by the user-supplied OPERATION. If DIM is absent, the whole (masked) ARRAY is
reduced to a scalar result. If DIM is present, the result has rank N -1 and the shape of ARRAY with dimension DIM

removed; each element of the result is the reduction of the masked elements in that dimension.

If exactly one element contributes to a result value, that value is equal to the element; that is, OPERATION is only
invoked when more that one element appears.

If no elements contribute to a result value, the IDENTITY argument must be present, and that value is equal to
IDENTITY.

For example,

Module triplet_m

Type triplet

Integer i,j,k

End Type

Contains

Pure Type(triplet) Function tadd(a,b)

Type(triplet),Intent(In) :: a,b

tadd%i = a%i + b%i

tadd%j = a%j + b%j

tadd%k = a%k + b%k

End Function

End Module

Program reduce_example

Use triplet_m

Type(triplet) a(2,3)

a = Reshape([triplet(1,2,3),triplet(1,2,4), &

triplet(2,2,5),triplet(2,2,6), &

triplet(3,2,7),triplet(3,2,8)], [2,3])

Print 1, Reduce(a,tadd)

Print 1, Reduce(a,tadd,1)

Print 1, Reduce(a,tadd,a%i/=2)

5

Print 1, Reduce(Array=a,Dim=2,Operation=tadd)

Print 1, Reduce(a, Mask=a%i/=2, Dim=1, Operation=tadd, Identity=triplet(0,0,0))

1 Format(1x,6(’triplet(’,I0,’,’,I0,’,’,I0,’)’,:,’; ’))

End Program

This will produce the output:

triplet(12,12,33)

triplet(2,4,7); triplet(4,4,11); triplet(6,4,15)

triplet(8,8,22)

triplet(6,6,15); triplet(6,6,18)

triplet(2,4,7); triplet(0,0,0); triplet(6,4,15)

• [7.0] The intrinsic atomic subroutines ATOMIC ADD, ATOMIC AND, ATOMIC CAS, ATOMIC FETCH ADD,
ATOMIC FETCH AND, ATOMIC FETCH OR, ATOMIC FETCH XOR, ATOMIC OR and ATOMIC XOR are described under
Advanced coarray programming.

• [7.1] The intrinsic collective subroutines CO BROADCAST, CO MAX, CO MIN, CO REDUCE and CO SUM are described
under Advanced coarray programming.

• [7.0] The intrinsic functions COSHAPE, EVENT QUERY, FAILED IMAGES, GET TEAM, IMAGE STATUS, STOPPED IMAGES,
and TEAM NUMBER, and the changes to the intrinsic functions NUM IMAGES and THIS IMAGE, are described under
Advanced coarray programming.

8 Program units and procedures

• [7.0] If a dummy argument of a function that is part of an OPERATOR generic has the VALUE attribute, it is no
longer required to have the INTENT(IN) attribute.

For example,

INTERFACE OPERATOR(+)

MODULE PROCEDURE logplus

END INTERFACE

...

PURE LOGICAL FUNCTION logplus(a,b)

LOGICAL,VALUE :: a,b

logplus = a.OR.b

END FUNCTION

• [7.0] If the second argument of a subroutine that is part of an ASSIGNMENT generic has the VALUE attribute, it is
no longer required to have the INTENT(IN) attribute.

For example,

INTERFACE ASSIGNMENT(=)

MODULE PROCEDURE asgnli

END INTERFACE

...

PURE SUBROUTINE asgnli(a,b)

LOGICAL,INTENT(OUT) :: a

INTEGER,VALUE :: b

DO WHILE (IAND(b,NOT(1))/=0)

b = IEOR(IAND(b,1),SHIFTR(b,1))

END DO

a = b/=0 ! Odd number of "1" bits.

END SUBROUTINE

• [7.0] With the−recursive or the−f2018 option, procedures are recursive by default. For example, this subprogram

6

INTEGER FUNCTION factorial(n) RESULT(r)

IF (n>1) THEN

r = n*factorial(n-1)

ELSE

r = 1

END IF

END FUNCTION

is valid, just as if it had been explicitly declared with the RECURSIVE keyword.

This does not apply to assumed-length character functions (where the result is declared with CHARACTER(LEN=*);
these remain prohibited from being declared RECURSIVE.

Note that procedures that are RECURSIVE by default are excluded from the effects of the −save option, exactly
as if they were explicitly declared RECURSIVE.

• [7.0] Elemental procedures may now be recursive, whether explicitly declared RECURSIVE or by default (when
the −f2018 or −recursive options are specified). For example,

ELEMENTAL RECURSIVE INTEGER FUNCTION factorial(n) RESULT(r)

INTEGER,INTENT(IN) :: n

IF (n>1) THEN

r = n*factorial(n-1)

ELSE

r = 1

END IF

END FUNCTION

may be invoked with

PRINT *,factorial([1,2,3,4,5])

to print the first five factorials.

• The NON RECURSIVE keyword explicitly declares that a procedure will not be called recursively. For example,

NON_RECURSIVE INTEGER FUNCTION factorial(n) RESULT(r)

r = 1

DO i=2,n

r = r*i

END DO

END FUNCTION

In Fortran 2008 and older standards, procedures are non-recursive by default, so this keyword has no effect
unless the −recursive or −f2018 is being used.

• Generic resolution can use the number of procedure arguments; that is, if one procedure has more non-optional
procedure arguments than the other has optional plus non-optional procedure arguments, the procedures are
considered to be unambiguous.

For example,

MODULE npa_example

INTERFACE g

MODULE PROCEDURE s1,s2

END INTERFACE

CONTAINS

SUBROUTINE s1(a)

EXTERNAL a

CALL a

END SUBROUTINE

SUBROUTINE s2(b,a)

EXTERNAL b,a

7

CALL b

CALL a

END SUBROUTINE

END MODULE

This example does not conform to the Fortran 2008 rules for unambiguous generic procedures, because the
argument A distinguishes by position but not by keyword, the argument B distinguish by keyword but not by
position, and the positional disambiguator (A) does not appear earlier in the list than the keyword disambiguator
(B).

9 Advanced C interoperability

• [7.0] The C FUNLOC function from the intrinsic module ISO C BINDING accepts a non-interoperable procedure
argument. The C FUNPTR value produced should not be converted to a C function pointer, but may be converted
to a suitable (also non-interoperable) Fortran procedure pointer with the C F PROCPOINTER subroutine from
ISO C BINDING. For example,

USE ISO_C_BINDING

ABSTRACT INTERFACE

SUBROUTINE my_callback_interface(arg)

CLASS(*) arg

END SUBROUTINE

END INTERFACE

TYPE,BIND(C) :: mycallback

TYPE(C_FUNPTR) :: callback

END TYPE

...

TYPE(mycallback) cb

PROCEDURE(my_callback_interface),EXTERNAL :: sub

cb%callback = C_FUNLOC(sub)

...

PROCEDURE(my_callback_interface),POINTER :: pp

CALL C_F_PROCPOINTER(cb%callback,pp)

CALL pp(...)

This functionality may be useful in a mixed-language program when the C FUNPTR value is being stored in a
data structure that is manipulated by C code.

• [7.0] The C LOC function from the intrinsic module ISO C BINDING accepts an array of non-interoperable type,
and the C F POINTER function accepts an array pointer of non-interoperable type. The array must still be
non-polymorphic and contiguous.

This improves interoperability with mixed-language C and Fortran programming, by letting the program pass
an opaque “handle” for a non-interoperable array through a C routine or C data structure, and reconstruct the
Fortran array pointer later. This kind of usage was previously only possible for scalars.

• [7.1] Assumed-rank variables are permitted to be dummy arguments of a BIND(C) routine, even those with the
ALLOCATABLE or POINTER attribute. An assumed-rank argument is passed by reference as a “C descriptor”; it is
then up to the C routine to decode what that means. The C descriptor, along with several utility functions for
manipulating it, is defined by the source file ISO Fortran binding.h; this can be found in the compiler’s library
directory (on Linux this is usually /usr/local/lib/NAG Fortran, but that can be changed at installation time).

This topic is highly complex, and beyond the scope of this document. The reader should direct their attention
to the Fortran 2018 standard, or to a good textbook.

• [7.1] A TYPE(*) (“assumed type”) dummy argument is permitted in a BIND(C) procedure. It interoperates with
a C argument declared as “void *”. There is no difference between scalar and assumed-size on the C side, but
on the Fortran side, if the dummy argument is scalar the actual argument must also be scalar, and if the dummy
argument is an array, the actual argument must also be an array.

8

Because an actual argument can be passed directly to a TYPE(*) dummy, the C LOC function is not required,
and so there is no need for the TARGET attribute on the actual argument.

For example,

Program type_star_example

Interface

Function checksum(scalar,size) Bind(C)

Use Iso_C_Binding

Type(*) scalar

Integer(C_int),Value :: size

Integer(C_int) checksum

End Function

End Interface

Type myvec3

Double Precision v(3)

End Type

Type(myvec3) x

Call Random_Number(x%v)

Print *,checksum(x,Storage_Size(x)/8)

End Program

int checksum(void *a,int n)

{

int i;

int res = 0;

unsigned char *p = a;

for (i=0; i<n; i++) res = 0x3fffffff&((res<<1) + p[i]);

return res;

}

• A BIND(C) procedure can have optional arguments. Such arguments cannot also have the VALUE attribute.

An absent optional argument of a BIND(C) procedure is indicated by passing a null pointer argument.

For example,

Program optional_example

Use Iso_C_Binding

Interface

Function f(a,b) Bind(C)

Import

Integer(C_int),Intent(In) :: a

Integer(C_int),Intent(In),Optional :: b

Integer(C_int) f

End Function

End Interface

Integer(C_int) x,y

x = f(3,14)

y = f(23)

Print *,x,y

End Program

int f(int *arg1,int *arg2)

{

int res = *arg1;

if (arg2) res += *arg2;

return res;

}

The second reference to f is missing the optional argument b, so a null pointer will be passed for it. This will
result in the output:

17 23

9

10 Updated IEEE arithmetic capabilities

• [7.0] The module IEEE ARITHMETIC has new functions IEEE NEXT DOWN and IEEE NEXT UP. These are elemental
with a single argument, which must be a REAL of an IEEE kind (that is, IEEE SUPPORT DATATYPE must return
.TRUE. for that kind of REAL). They return the next IEEE value, that does not compare equal to the argument,
in the downwards and upwards directions respectively, except that the next down from −∞ is −∞ itself, and the
next up from +∞ is +∞ itself. These functions are superior to the old IEEE NEXT AFTER function in that they
do not signal any exception unless the argument is a signalling NaN (in which case IEEE INVALID is signalled).

For example, IEEE NEXT UP(-0.0) and IEEE NEXT UP(+0.0) both return the smallest positive subnormal value
(provided subnormal values are supported), without signalling IEEE UNDERFLOW (which IEEE NEXT AFTER does).

Similarly, IEEE NEXT UP(HUGE(0.0)) returns +∞ without signalling overflow.

• [7.0] The module IEEE ARITHMETIC has new named constants IEEE NEGATIVE SUBNORMAL,
IEEE POSITIVE SUBNORMAL, and the new function IEEE SUPPORT SUBNORMAL. These are from Fortran 2018, and
reflect the change of terminology in the IEEE arithmetic standard in 2008. They are equivalent to the old
functions IEEE NEGATIVE DENORMAL, IEEE POSITIVE DENORMAL and IEEE SUPPORT DENORMAL.

• [7.0] The requirement that the FLAG VALUE argument to IEEE GET FLAG and IEEE SET FLAG, the HALTING
argument to IEEE GET HALTING MODE and IEEE SET HALTING MODE, and the GRADUAL argument to
IEEE GET UNDERFLOW MODE and IEEE SET UNDERFLOW MODE, be default LOGICAL has been dropped; any kind of
LOGICAL is now permitted.

For example,

USE F90_KIND

USE IEEE_ARITHMETIC

LOGICAL(byte) flags(SIZE(IEEE_ALL))

CALL IEEE_GET_FLAG(IEEE_ALL,flags)

will retrieve the current IEEE flags into an array of one-byte LOGICALs.

11 Advanced coarray programming

• [7.0] Additional intrinsic atomic subroutines provide a means for multiple images to update atomic variables
without synchronisation. These are:

ATOMIC ADD (ATOM,VALUE,STAT)

ATOMIC AND (ATOM,VALUE,STAT)

ATOMIC CAS (ATOM,OLD,COMPARE,NEW,STAT)

ATOMIC FETCH ADD (ATOM,VALUE,OLD,STAT)

ATOMIC FETCH AND (ATOM,VALUE,OLD,STAT)

ATOMIC FETCH OR (ATOM,VALUE,OLD,STAT)

ATOMIC FETCH XOR (ATOM,VALUE,OLD,STAT)

ATOMIC OR (ATOM,VALUE,STAT)

ATOMIC XOR (ATOM,VALUE,STAT)

The arguments ATOM, COMPARE, NEW and OLD are all INTEGER(ATOMIC INT KIND). The ATOM argument is the one
that is updated, and must be a coarray or a coindexed variable. The OLD argument is INTENT(OUT), and receives
the value of ATOM before the operation. The STAT argument is optional, and must be a non-coindexed variable
of type INTEGER and at least 16 bits in size.

The VALUE argument must be INTEGER but can be of any kind; however, both VALUE and the result of the
operation must be representable in INTEGER(ATOMIC INT KIND).

The * ADD operation is addition, the * AND operation is bitwise and (like IAND), the * OR operation is bitwise or
(like IOR) and the * XOR operation is bitwise exclusive or (like IEOR).

ATOMIC CAS is an atomic compare-and-swap operation. If ATOM is equal to COMPARE, it is assigned the value NEW;
otherwise, it remains unchanged. In either case, the value before the operation is assigned to OLD. Note that
both COMPARE and NEW must also be INTEGER(ATOMIC INT KIND).

If the ATOM is a coindexed variable, and is located on a failed image, the operation fails and an error condition is
raised; the OLD argument becomes undefined, and if STAT is present, it is assigned the value STAT FAILED IMAGE;

10

if STAT is not present, the program is terminated. If no error occurs and STAT is present, it is assigned the value
zero.

• [7.0] The intrinsic function COSHAPE returns a vector of the co-extents of a coarray; its syntax is as follows.

COSHAPE(COARRAY [, KIND])

COARRAY : coarray of any type; if it is ALLOCATABLE, it must be allocated; if it is a structure component,
the rightmost component must be a coarray component;

KIND (optional) : scalar Integer constant expression that is a valid Integer kind number;

Result : vector of type Integer, or Integer(KIND)} if KIND is present; the size of the result is equal to
the co-rank of COARRAY.

For example, if a coarray is declared

REAL x[5,*]

and there are eight images in the current team, COSHAPE(x) will be equal to [5,2].

• [7.0] The intrinsic elemental function IMAGE STATUS enquires whether another image has stopped or failed; its
syntax is as follows.

IMAGE STATUS(IMAGE [, TEAM])

IMAGE : positive integer that is a valid image number;

TEAM (optional) : scalar TEAM TYPE value that identifies the current or an ancestor team;

Result : default Integer.

The value of the result is STAT FAILED IMAGE if the image has failed, STAT STOPPED IMAGE if the image has
stopped, and zero otherwise. The optional TEAM argument specifies which team the image number applies to; if
it is not specified, the current team is used.

• [7.0] The intrinsic function STOPPED IMAGES returns an array listing the images that have initiated normal
termination (i.e. “stopped”); its syntax is as follows.

STOPPED IMAGES([TEAM, KIND])

TEAM (optional) : scalar TEAM TYPE value that identifies the current or an ancestor team;

KIND (optional) : scalar INTEGER constant expression that is a valid Integer kind number;

Result : vector of type Integer, or Integer(KIND) if KIND is present.

The elements of the result are the stopped image numbers in ascending order.

• [7.0] The type EVENT TYPE in the intrinsic module ISO FORTRAN ENV, along with new statements and the intrinsic
function EVENT QUERY, provides support for events, a lightweight one-sided synchronisation mechanism.

Like type LOCK TYPE, entities of type EVENT TYPE are required to be variables or components, variables of type
EVENT TYPE are required to be coarrays, and variables with noncoarray subcomponents of type LOCK TYPE are
required to be coarrays. Such variables are called event variables. An event variable is not permitted to appear
in a variable definition context (i.e. any context where it might be modified), except in an EVENT POST or EVENT
WAIT statement, or as an actual argument where the dummy argument is INTENT(INOUT).

An event variable on an image may have an event “posted” to it by means of the image control statement EVENT
POST, which has the form

EVENT POST (event-variable [, sync-stat]...)

11

where the optional sync-stats may be a single STAT=stat-variable specifier and/or a single ERRSMG=errmsg-variable
specifier; stat-variable must be a scalar integer variable that can hold values up to 9999, and errmsg-variable
must be a scalar default character variable. Posting an event increments the variable’s “outstanding event count”
(this count is initially zero). The event-variable in this statement will usually be a coindexed variable, as it is
rarely useful for an image to post an event to itself.

If STAT= appears and the post is successful, zero is assigned to the stat-variable. If the image on which the
event-variable is located has stopped, STAT STOPPED IMAGE is assigned to the stat-variable; if the image has
failed, STAT FAILED IMAGE is assigned, and if any other error occurs, some other positive value is assigned. If
ERRMSG= appears and any error occurs, an explanatory message is assigned to the errmsg-variable. Note that if
STAT= does not appear and an error occurs, the program will be error-terminated, so having ERRMSG= without
STAT= is useless.

Events are received by the image control statement EVENT WAIT, which has the form

EVENT WAIT (event-variable [, event-wait-spec-list])

where the optional event-wait-spec-list is a comma-separated list that may contain a single STAT=stat-variable
specifier, a single ERRSMG=errmsg-variable specifier, and/or a single UNTIL COUNT=scalar-integer-expr specifier.
Waiting on an event waits until its “outstanding event count” is greater than or equal to the UNTIL COUNT=

specifier value, or greater than zero if UNTIL COUNT= does not appear. If the value specified in UNTIL COUNT= is
less than one, it is treated as if it were equal to one.

The event-variable in this statement is not permitted to be coindexed; that is, an image can only wait for
events posted to its own event variables. There is a partial synchronisation between the waiting image and
the images that contributed to the “outstanding event count”; the segment following execution of the EVENT

WAIT statement follows the segments before the EVENT POST statement executions. The synchronisation does
not operate in reverse, that is, there is no implication that execution of any segment in a posting image follows
any segment in the waiting image.

The STAT= and ERRMSG= operate similarly to the EVENT POST statement, except of course that STAT FAILED IMAGE

and STAT STOPPED IMAGE are impossible.

Finally, the intrinsic function EVENT QUERY can be used to interrogate an event variable without waiting for it.
It has the form

EVENT_QUERY (EVENT, COUNT [, STAT])

where EVENT is an event variable, COUNT is an integer variable at least as big as default integer, and the optional
STAT is an integer variable that can hold values up to 9999. EVENT is not permitted to be a coindexed variable;
that is, only the image where the event variable is located is permitted to query its count. COUNT is assigned
the current “outstanding event count” of the event variable. If STAT is present, it is assigned the value zero on
successful execution, and a positive value if any error occurs. If any error occurs and STAT is not present, the
program is error-terminated.

Note that event posts in unordered segments might not be included in the value assigned to count; that is, it
might take some (communication) time for an event post to reach the variable, and it is only guaranteed to have
reached the variable if the images have already synchronised. Use of EVENT QUERY does not by itself imply any
synchronisation.

• [7.0] The type TEAM TYPE in the intrinsic module ISO FORTRAN ENV, along with new statements and intrinsic
procedures, provides support for teams, a new method of structuring coarray parallel computation. The basic
idea is that while executing inside a team, the coarray environment acts as if only the images in the team exist.
This facilitates splitting coarray computations into independent parts, without the hassle of passing around
arrays listing the images that are involved in a particular part of the computation.

Unlike EVENT TYPE and LOCK TYPE, functions that return TEAM TYPE are permitted. Furthermore, a variable of
type TEAM TYPE is forbidden from being a coarray, and assigning a TEAM TYPE value from another image (e.g. as
a component of a derived type assignment) makes the variable undefined; this is because the TEAM TYPE value
might contain information specific to a particular image, e.g. routing information to the other images. Variables
of type TEAM TYPE are called team variables.

Creating teams
The set of all the images in the program is called the initial team. At any time, a particular image will be
executing in a particular team, the current team. A set of subteams of the current team can be created
at any time by using the FORM TEAM statement, which has the form

12

FORM TEAM (team-number , team-variable [, form-team-spec]...)

where team-number is a scalar integer expression that evaluates to a positive value, team-variable is a team
variable, and each form-team-spec is STAT=, ERRMSG=, and NEW INDEX=index-value specifier. At most one of
each kind of form-team-spec may appear in a FORM TEAM statement. All active images of the current team
must execute the same FORM TEAM statement. If NEW INDEX= appears, index-value must be a positive scalar
integer (see below). The STAT= and ERRMSG= specifiers have their usual form and semantics.

The number of subteams that execution of FORM TEAM produces is equal to the number of unique team-
number values in that execution; each unique team-number value identifies a subteam in the set, and each
image belongs to the subteam whose team number it specified. If NEW INDEX= appears, it specifies the image
number that the image will have in its new subteam, and therefore must be in the range 1 to N, where
N is the number of images in that subteam, and must be unique. If NEW INDEX= does not appear, it is
processor-dependent what the image number in the new subteam will be.

For example,

TYPE(TEAM_TYPE) oddeven

myteamnumber = 111*(MOD(THIS_IMAGE(),2) + 1)

FORM TEAM (myteamnumber, oddeven)

will create a set of two subteams, one with team number 111, the other with team number 222. Team 111
will contain the images with even image numbers in the current team, and team 222 will contain the images
with odd image numbers in the current team. On each image, the variable oddeven identifies the subteam
to which that image belongs.

Note that the team numbers are completely arbitrary (being chosen by the program), and only have meaning
within that set of subteams, which are called “sibling” teams.

Changing to a subteam
The current team is changed by executing a CHANGE TEAM construct, which has the basic form:

CHANGE TEAM (team-value [, sync-stat-list])

statements

END TEAM [([sync-stat-list])]

where team-value is a value of type TEAM TYPE, and the optional sync-stat-list is a comma-separated list
containing at most one STAT= and ERRMSG= specifier; the STAT= and ERRMSG= specifiers have their usual form
and semantics. Execution of the statements within the construct are with the current team set to the team
identified by team-value; this must be a subteam of the current team outside the construct. The setting of
the current team remains in effect during procedure calls, so any procedure referenced by the construct will
also be executed with the new team current.

Transfer of control out of the construct, e.g. by a RETURN or GOTO statement is prohibited. The construct
may be exited by executing its END TEAM statement, or by executing an EXIT statement that belongs to the
construct; the latter is only possible if the construct is given a name (this is not shown in the form above,
but consists of “construct-name:” prefix to the CHANGE TEAM statement, and and a “construct-name” suffix
to the END TEAM statement).

While executing a CHANGE TEAM construct, image selectors operate using the new team’s image indices,
the intrinsic functions NUM IMAGES and THIS IMAGES return the data for the new team, and SYNC ALL

synchronises the new team only.

There is an implicit synchronisation of all images of the new team both on the CHANGE TEAM statement, and
on the END TEAM statement, and all active images must execute the same statement at this time.

Synchronising parent or ancestor teams
While executing within a CHANGE TEAM construct, the effects of SYNC ALL and SYNC IMAGES only apply to
images within the current team. For SYNC ALL to synchronise the parent team, it would be necessary to first
exit the construct. This may be inconvenient when the computation following the synchronisation would be
within the team.

For this purpose, the SYNC TEAM statement has been added, with the form

SYNC TEAM (team-value [, sync-stat-list])

where team-value identifies the current team or an ancestor thereof, and sync-stat-list is the usual comma-
separated list containing at most one STAT= specifier and at most one ERRMSG= specifier (these have their
usual semantics and so are not further described here).

The effect is to synchronise all images in the specified team.

13

Team-related intrinsic functions
– The intrinsic function GET TEAM returns a value of type TEAM TYPE that identifies a particular team.

(This is the only way to get a TEAM TYPE value for the initial team.) The function has the form

GET_TEAM([LEVEL])

where the optional LEVEL argument is a scalar integer value that is equal to one of the named constants
CURRENT TEAM, INITIAL TEAM or PARENT TEAM, in the intrinsic module ISO FORTRAN ENV. This argument
specifies which team the returned TEAM TYPE value should identify; if it is absent, the value for the current
team is returned. If the current team is the initial team, the LEVEL argument must not be equal to
PARENT TEAM, as the initial team has no parent.

– The intrinsic function TEAM NUMBER returns a team number value (that was used in FORM TEAM by the
executing image). It has the form

TEAM_NUMBER([TEAM])

where the optional TEAM argument specifies which team to return the information for; it must identify
the current team or an ancestor team, not a subteam or unrelated team. If TEAM is absent, the team
number for the current team is returned. The initial team is considered to have a team number of −1
(except for the initial team, all team numbers are positive values).

Information about sibling and ancestor teams
The intrinsic functions NUM IMAGES and THIS IMAGE normally return information relevant to the current
team, but they can return information for an ancestor team by using the optional TEAM argument, which
takes a TEAM TYPE value that identifies the current team or an ancestor. Similarly, the NUM IMAGES intrinsic
can return information for a sibling team by using the optional TEAM NUMBER argument, which takes an
integer value that is equal to the team number of the current or a sibling team. (Note that because the
executing image is never a member of a sibling team, THIS IMAGE does not accept a TEAM NUMBER argument.)
The intrinsic function NUM IMAGES thus has two additional forms as follows:

NUM_IMAGES(TEAM)

NUM_IMAGES(TEAM_NUMBER)

For THIS IMAGE, the revised forms it may take are as follows:

THIS_IMAGE([TEAM])

THIS_IMAGE(COARRAY [, TEAM])

THIS_IMAGE(COARRAY, DIM [, TEAM])

The meanings of the COARRAY and DIM arguments is unchanged. The optional TEAM argument specifies the
team for which to return the information.

Establishing coarrays
A coarray is not allowed to be used within a team unless it is established in that team or an ancestor
thereof. The basic rules for establishment are as follows:

1. a nonallocatable coarray with the SAVE attribute (explicit or implicit) is always established;

2. an unallocated coarray (with the ALLOCATABLE attribute) is not established;

3. an allocated coarray is established in the team where it was allocated;

4. a dummy coarray is established in the team that executed the procedure call (this may be different from
the team where the actual argument is established).

Allocating and deallocating coarrays in teams
If a coarray with the ALLOCATABLE attribute is already allocated when a CHANGE TEAM statement is executed,
it is not allowed to DEALLOCATE it within that construct (or within a procedure called from that construct).

If a coarray with the ALLOCATABLE attribute is unallocated when a CHANGE TEAM statement is executed, it may
be allocated (using ALLOCATE) within that construct (or within a procedure called from that construct), and
may be subsequently deallocated as well. If such a coarray remains allocated when the END TEAM statement
is executed, it is automatically deallocated at that time.

This means that when using teams, allocatable coarrays may be allocated on some images (within the team),
but unallocated on other images (outside the team), or allocated with a different shape or type parameters on
other images (also outside the team). However, when executing in a team, the coarray is either unallocated
on all images of the team, or allocated with the same type parameters and shape on all images of the team.

Accessing coarrays in sibling teams
Access to a coarray outside the current team, but in a sibling team, is possible using the TEAM NUMBER=

specifier in an image selector. This uses the extended syntax for image selectors:

[cosubscript-list [, image-selector-spec-list]]

14

where cosubscript-list is the usual list of cosubscripts, and image-selector-spec-list contains a TEAM NUMBER=team-
number specifier, where team-number is the positive integer value that identifies a sibling team. The image-
selector-spec-list may also contain a STAT= specifier (this is described later, under Fault tolerance).

When the TEAM NUMBER= specifier is used the cosubscripts are treated as cosubscripts in the sibling team.
Note that access in this way is quite risky, and will typically require synchronisation, possibly of the whole
parent team. The coarray in question must be established in the parent team.

Accessing coarrays in ancestor teams
Access to a coarray in the parent or more distant ancestor team is possible using the TEAM= specifier in an
image selector. This uses the extended syntax for image selectors:

[cosubscript-list [, image-selector-spec-list]]

where cosubscript-list is the usual list of cosubscripts, and image-selector-spec-list contains a TEAM=team-
value specifier, where team-value is a value of type TEAM TYPE that identifies the current team or an ancestor.
The image-selector-spec-list may also contain a STAT= specifier (this is described later, under Fault tolerance).

When the TEAM= specifier is used the cosubscripts are treated as cosubscripts in the specified ancestor team,
and the image thus specified may lie within or outside the current team. If the access is to an image that
is outside the current team, care should be taken that the images are appropriately synchronised; such
synchronisation cannot be obtained by SYNC ALL or SYNC IMAGES, as they operate within a team, but may
be obtained by SYNC TEAM specifying an ancestor team, or by using locks or events. The coarray in question
must be established in the specified (current or ancestor) team.

Coarray association in CHANGE TEAM

It is possible to associate a local coarray-name in a CHANGE TEAM construct with a named coarray outside
the construct, changing the codimension and/or coextents in the process. This acts like a limited kind of
argument association; the local coarray-name has the type, parameters, rank and array shape of the outside
coarray, but does not have the ALLOCATABLE attribute. The syntax of the CHANGE TEAM construct with one
or more such associations is as follows:

CHANGE TEAM (team-value , coarray-association-list [, sync-stat-list])

where coarray-association-list is a comma-separated list of

local-coarray-name [explicit-coshape-spec] => outer-coarray-name

and explicit-coshape-spec is

[[lower-cobound :] upper-cobound ,]... [lower-cobound :] *

(The notation [something]... means something occurring zero or more times.)

The cobounds expressions are evaluated on execution of the CHANGE TEAM statement.

Use of this feature is not encouraged, as it is less powerful and more confusing than argument association.

• [7.0] Fault tolerance features for coarrays are supported. These consist of the FAIL IMAGE statement, the named
constant STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV, the STAT= specifier in an image selector,
and the intrinsic function FAILED IMAGES.

The form of the FAIL IMAGE statement is simply

FAIL IMAGE

and execution of this statement will cause the current image to “fail”, that is, cease to participate in program
execution. This is the only way that an image can fail in NAG Fortran 7.0.

If all images have failed or stopped, program execution will terminate. NAG Fortran will display a warning
message if any images have failed.

An image selector has an optional list of specifiers, the revised syntax of an image selector being (where the
normal square brackets are literally square brackets, and the italic square brackets indicate optionality):

[cosubscript-list [, image-selector-spec-list]]

where cosubscript-list is a comma-separated list of cosubscripts, one scalar integer per codimension of the variable,
and image-selector-spec-list is a comma-separated containing at most one STAT=stat-variable specifier, and at
most one TEAM= or TEAM NUMBER= specifier (these were described earlier). If the coindexed object being accessed

15

lies on a failed image, the value STAT FAILED IMAGE is assigned to the stat-variable, and otherwise the value zero
is assigned.

The intrinsic function FAILED IMAGES returns an array of images that are known to have failed (it is possible
that an image might fail and no other image realise until it tries to synchronise with it). Its syntax is as follows.

FAILED IMAGES([TEAM, KIND])

TEAM (optional) : scalar TEAM TYPE value that identifies the current or an ancestor team;

KIND (optional) : scalar Integer constant expression that is a valid Integer kind number;

Result : vector of type Integer, or Integer(KIND) if KIND is present.

The elements of the result are the failed image numbers in ascending order.

In order to be able to handle failed images, the following semantics apply:

– writing a value to a variable on a failed image is permitted (but may have no effect);

– reading a value from a variable on a failed image is permitted, but the result is unpredictable;

– execution of a CHANGE TEAM, END TEAM, FORM TEAM, SYNC ALL, SYNC IMAGES or SYNC TEAM statement with
a STAT= specifier is permitted, and performs the team change, creation, or synchronisation operation on
the non-failed images, assigning the value STAT FAILED IMAGE to the STAT= variable.

The latter effect in particular allows the program to form a team of all the non-failed images, and keep executing
normally. However, since the data on the failed images is lost (reading the data produces garbage), the program
would need to be carefully designed to “checkpoint” its work periodically, so that it can roll the computation
state back to a known good value to recover.

The fault tolerance features are in principle intended to permit recovery from hardware failure, with the FAIL

IMAGE statement allowing some testing of recovery scenarios. The NAG Fortran Compiler does not support
recovery from hardware failure (at Release 7.1).

• [7.1] The intrinsic subroutines CO BROADCAST, CO MAX, CO MIN, CO REDUCE and CO SUM perform collective oper-
ations. These are for coarray parallelism: they compute values across all images in the current team, without
explicit synchronisation.

All of these subroutines have optional STAT and ERRMSG arguments. On successful execution, the STAT argument
is assigned the value zero and the ERRMSG argument is left unchanged. If an error occurs, a positive value is
assigned to STAT and an explanatory message is assigned to ERRMSG. Only the errors STAT FAILED IMAGE and
STAT STOPPED IMAGE are likely to be able to be caught in this way. Because there is not full synchronisation (see
below), different images may receive different errors, or none at all. If an error occurs and STAT is not present,
execution is terminated. Note that if the actual arguments for STAT or ERRMSG are optional dummy arguments,
they must be present on all images or absent on all images.

A reference (CALL) to one of these subroutines is not an image control statement, does not end the current
segment, and does not imply synchronisation (though some partial synchronisation will occur during the com-
putation). However, such calls are only permitted where an image control statement is permitted.

Each image in a team must execute the same sequence of CALL statements to collective subroutines as the other
images in the team. There must be no synchronisation between the images at the time of the call; the invocations
must come from unordered segments.

All collective subroutines have the first argument “A”, which is INTENT(INOUT), and must not be a coindexed
object. This argument contains the data for the calculation, and must have the same type, type parameters,
and shape on all images in the current team. If it is a coarray that is a dummy argument, it must have the same
ultimate argument on all images.

SUBROUTINE CO BROADCAST (A, SOURCE IMAGE [, STAT, ERRMSG])

A : variable of any type; it must not be a coindexed object, and must have the same type, type
parameters and shape on all images in the current team; if A is a coarray that is a dummy argument,
it must have the same ultimate argument on each image;

SOURCE IMAGE : integer scalar, in the range one to NUM IMAGES(), this argument must have the same
value on all images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

16

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

The value of argument A on image SOURCE IMAGE is assigned to the argument A on all the other images.

SUBROUTINE CO MAX (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Character; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes the maximum value of A across all images; if A is an array, the value is
computed elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image,
otherwise it is assigned to argument A on all images.

SUBROUTINE CO MIN (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Character; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes the minimum value of A across all images; if A is an array, the value is
computed elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image,
otherwise it is assigned to argument A on all images.

SUBROUTINE CO REDUCE (A, OPERATION [, RESULT IMAGE, STAT, ERRMSG])

A: non-polymorphic variable of any type; it must not be a coindexed object, and must have the same
type, type parameters and shape on all images in the current team; if A is a coarray that is a dummy
argument, it must have the same ultimate argument on each image;

OPERATION : pure function with exactly two arguments; the dummy arguments of OPERATION must
be non-allocatable, non-optional, non-pointer, non-polymorphic dummy variables, and each argument
and the result of the function must be scalar with the same type and type parameters as A;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes an arbitrary reduction of A across all images; if A is an array, the value is
computed elementally. The reduction is computed starting with the set of corresponding values of A
on all images; this is an iterative process, taking two values from the set and converting them to a
single value by applying the OPERATION function; the process continues until the set contains only a
single value — that value is the result. If RESULT IMAGE is present, the result is assigned to argument
A on that image, otherwise it is assigned to argument A on all images.

17

SUBROUTINE CO SUM (A [, RESULT IMAGE, STAT, ERRMSG])

A: variable of type Integer, Real, or Complex; it must not be a coindexed object, and must have the
same type, type parameters and shape on all images in the current team; if A is a coarray that is a
dummy argument, it must have the same ultimate argument on each image;

RESULT IMAGE (optional) : integer scalar, in the range one to NUM IMAGES(), this argument must be
either present on all images or absent on all images; if present, it must have the same value on all
images in the current team;

STAT (optional) : integer scalar variable, not coindexed;

ERRMSG (optional) : character scalar variable of default kind, not coindexed.

This subroutine computes the sum of A across all images; if A is an array, the value is computed
elementally. If RESULT IMAGE is present, the result is assigned to argument A on that image, otherwise
it is assigned to argument A on all images.

12 References

The Fortran 2018 standard, ISO/IEC 1539-1:2018(E), is available from ISO as well as from many national standards
bodies. A number of books describing the new standard are available; the recommended reference book is “Modern
Fortran Explained (Incorporating Fortran 2018)” by Metcalf, Reid & Cohen, Oxford University Press, 2018 (ISBN
978-0-19-881188-6).

18

